Search results for "Endotoxin"

showing 10 items of 144 documents

High Genetic Variability for Resistance to Bacillus thuringiensis Toxins in a Single Population of Diamondback Moth

2001

ABSTRACT The long-term benefit of insecticidal products based on Cry toxins, either in sprays or as transgenic crops, is threatened by the development of resistance by target pests. The models used to predict evolution of resistance to Cry toxins most often are monogenic models in which two alleles are used. Moreover, the high-dose/refuge strategy recommended for implementation with transgenic crops relies on the assumption that the resistance allele is recessive. Using selection experiments, we demonstrated the occurrence in a laboratory colony of diamondback moth of two different genes (either allelic or nonallelic) that confer resistance to Cry1Ab. At the concentration tested, resistance…

Bacterial ToxinsPopulationBacillus thuringiensisGenes InsectGenetically modified cropsMothsBiologyApplied Microbiology and BiotechnologyInsecticide ResistanceHemolysin ProteinsBacterial ProteinsBacillus thuringiensisGenetic variationBotanyInvertebrate MicrobiologyAnimalsGenetic variabilitySelection GeneticAllelePest Control BiologicaleducationGeneGeneticseducation.field_of_studyDiamondback mothBacillus thuringiensis ToxinsEcologyfungiGenetic Variationbiology.organism_classificationEndotoxinsFood ScienceBiotechnology
researchProduct

Global variation in the genetic and biochemical basis of diamondback moth resistance to Bacillus thuringiensis

1997

Insecticidal proteins from the soil bacterium Bacillus thuringiensis (Bt) are becoming a cornerstone of ecologically sound pest management. However, if pests quickly adapt, the benefits of environmentally benign Bt toxins in sprays and genetically engineered crops will be short-lived. The diamondback moth ( Plutella xylostella ) is the first insect to evolve resistance to Bt in open-field populations. Here we report that populations from Hawaii and Pennsylvania share a genetic locus at which a recessive mutation associated with reduced toxin binding confers extremely high resistance to four Bt toxins. In contrast, resistance in a population from the Philippines shows multilocus control, a …

Bacterial ToxinsPopulationBacillus thuringiensisGenetically modified cropsMothsGenomic ImprintingHemolysin ProteinsBacterial ProteinsBacillus thuringiensisGenetic variationAnimalsAllelePest Control BiologicaleducationGeneticseducation.field_of_studyMultidisciplinaryDiamondback mothBacillus thuringiensis Toxinsbiologybusiness.industryGenetic Complementation TestfungiPest controlfood and beveragesChromosome MappingGenetic VariationPlutellaBiological Sciencesbiology.organism_classificationEndotoxinsFemalebusinessProtein Binding
researchProduct

Genetic and Biochemical Approach for Characterization of Resistance to Bacillus thuringiensis Toxin Cry1Ac in a Field Population of the Diamondback M…

2000

ABSTRACT Four subpopulations of a Plutella xylostella (L.) strain from Malaysia (F 4 to F 8 ) were selected with Bacillus thuringiensis subsp. kurstaki HD-1, Bacillus thuringiensis subsp. aizawai , Cry1Ab, and Cry1Ac, respectively, while a fifth subpopulation was left as unselected (UNSEL-MEL). Bioassays at F 9 found that selection with Cry1Ac, Cry1Ab, B. thuringiensis subsp. kurstaki , and B. thuringiensis subsp. aizawai gave resistance ratios of >95, 10, 7, and 3, respectively, compared with UNSEL-MEL (>10,500, 500, >100, and 26, respectively, compared with a susceptible population, ROTH). Resistance to Cry1Ac, Cry1Ab, B. thuringiensis subsp. kurstaki , and B. thuringiensis subsp…

Bacterial ToxinsPopulationBacillus thuringiensisMothsBiologyApplied Microbiology and BiotechnologyMicrobiologyInsecticide ResistanceHemolysin ProteinsBacterial ProteinsBacillus thuringiensisBotanyInvertebrate MicrobiologyAnimalsSelection GeneticPest Control BiologicaleducationCrosses GeneticCross-resistanceGenes Dominanteducation.field_of_studyDiamondback mothBacillus thuringiensis ToxinsEcologyfungiParasporal bodyGenetic VariationPlutellabiology.organism_classificationBacillalesEndotoxinsGenetics PopulationCry1AcDigestive SystemFood ScienceBiotechnologyApplied and Environmental Microbiology
researchProduct

Specific binding  of Bacillus thuringiensis Cry2A insecticidal proteins to a common site in the midgut of Helicoverpa species

2008

ABSTRACT For a long time, it has been assumed that the mode of action of Cry2A toxins was unique and different from that of other three-domain Cry toxins due to their apparent nonspecific and unsaturable binding to an unlimited number of receptors. However, based on the homology of the tertiary structure among three-domain Cry toxins, similar modes of action for all of them are expected. To confirm this hypothesis, binding assays were carried out with 125 I-labeled Cry2Ab. Saturation assays showed that Cry2Ab binds in a specific and saturable manner to brush border membrane vesicles (BBMVs) of Helicoverpa armigera . Homologous-competition assays with 125 I-Cry2Ab demonstrated that this toxi…

BioquímicaBrush borderBiotecnologia agrícolaBacillus thuringiensisMicrobiologiaPlasma protein bindingHelicoverpa armigeraApplied Microbiology and BiotechnologyIodine RadioisotopesHemolysin ProteinsBacterial ProteinsBacillus thuringiensisPlaguicidesInvertebrate MicrobiologyAnimalsBinding siteHelicoverpaBacillus thuringiensis ToxinsStaining and LabelingEcologybiologyfungiMidgutbiology.organism_classificationEndotoxinsGastrointestinal TractLepidopteraKineticsBiochemistryHelicoverpa zeaProteïnesProtein BindingFood ScienceBiotechnology
researchProduct

Lack of Cry1Fa binding to the midgut brush border membrane in a resistant colony of Plutella xylostella moths with a mutaton in the ABCC2 locus

2012

ABSTRACT Previous studies reported “mode 1” Bacillus thuringiensis resistance in a colony of diamondback moths (NO-QA), and recently, this resistance has been mapped to an ABC transporter ( ABCC2 ) locus. We report the lack of binding of Cry1Fa to insects derived from this colony and compare our data with those from other insects with ABCC2 -associated resistance.

BioquímicaBrush borderBiotecnologia agrícolaDrug ResistanceResistència als plaguicidesLocus (genetics)ATP-binding cassette transporterDrug resistanceApplied Microbiology and BiotechnologyLepidoptera genitaliaHemolysin ProteinsPlagues ControlBacterial ProteinsBacillus thuringiensisInvertebrate MicrobiologyAnimalsGeneticsBacillus thuringiensis ToxinsMicrovilliEcologybiologyfungiPlutellaMidgutbiology.organism_classificationMultidrug Resistance-Associated Protein 2EndotoxinsLepidopteraMutationMultidrug Resistance-Associated ProteinsProtein BindingFood ScienceBiotechnology
researchProduct

Interaction of Bacillus thuringiensis Cry1 and Vip3A Proteins with Spodoptera frugiperda Midgut Binding Sites

2009

ABSTRACT Vip3Aa, Vip3Af, Cry1Ab, and Cry1Fa were tested for their toxicities and binding interactions. Vip3A proteins were more toxic than Cry1 proteins. Binding assays showed independent specific binding sites for Cry1 and Vip3A proteins. Cry1Ab and Cry1Fa competed for the same binding sites, whereas Vip3Aa competed for those of Vip3Af.

Bioquímicaanimal structuresBiotecnologia agrícolaBacillus thuringiensisPlasma protein bindingSpodopteraSpodopteraHemolysin ProteinsApplied Microbiology and BiotechnologyProtein–protein interactionMicrobiologyLethal Dose 50Hemolysin ProteinsBacterial ProteinsBacillus thuringiensisPlaguicidesInvertebrate MicrobiologyAnimalsBinding siteBacillus thuringiensis ToxinsEcologybiologyfungifood and beveragesMidgutbiology.organism_classificationBacillalesEndotoxinsGastrointestinal TractBiochemistryLarvasense organsProteïnesProtein BindingFood ScienceBiotechnologyApplied and Environmental Microbiology
researchProduct

Specific binding of radiolabeled Cry1Fa insecticidal protein from Bacillus thuringiensis to midgut sites in lepidopteran species

2012

ABSTRACT Cry1Fa insecticidal protein was successfully radiolabeled with 125 I-Na. Specific binding to brush border membrane vesicles was shown for the lepidopteran species Ostrinia nubilalis , Spodoptera frugiperda , Spodoptera exigua , Helicoverpa armigera , Heliothis virescens , and Plutella xylostella . Homologous competition assays were performed to obtain equilibrium binding parameters ( K d [dissociation constant] and R t [concentration of binding sites]) for these six insect species.

BioquímicavirusesBiotecnologia agrícolaBacillus thuringiensisHelicoverpa armigeraSpodopteraSpodopteraApplied Microbiology and BiotechnologyOstriniaIodine RadioisotopesHemolysin ProteinsPlagues ControlBacterial ProteinsSpecies SpecificityBacillus thuringiensisExiguaBotanyparasitic diseasesPlaguicidesInvertebrate MicrobiologyAnimalsBinding siteTransport VesiclesBinding SitesEcologybiologyHeliothis virescensBacillus thuringiensis ToxinsMicrovillifungiPlutellabiology.organism_classificationEndotoxinsLepidopteraBiochemistryDigestive SystemProteïnesFood ScienceBiotechnology
researchProduct

Shared Binding Sites for the Bacillus thuringiensis Proteins Cry3Bb, Cry3Ca, and Cry7Aa in the African Sweet Potato Pest Cylas puncticollis (Brentida…

2014

ABSTRACT Bacillus thuringiensis Cry3Bb, Cry3Ca, and Cry7Aa have been reported to be toxic against larvae of the genus Cylas , which are important pests of sweet potato worldwide and particularly in sub-Saharan Africa. However, relatively little is known about the processing and binding interactions of these coleopteran-specific Cry proteins. The aim of the present study was to determine whether Cry3Bb, Cry3Ca, and Cry7Aa proteins have shared binding sites in Cylas puncticollis to orient the pest resistance strategy by genetic transformation. Interestingly, processing of the 129-kDa Cry7Aa protoxin using commercial trypsin or chymotrypsin rendered two fragments of about 70 kDa and 65 kDa. N-…

Brush borderBacillus thuringiensisBiological pest controlHemolysin ProteinsApplied Microbiology and BiotechnologyMicrobiologyHemolysin ProteinsBacterial ProteinsBacillus thuringiensisEnvironmental MicrobiologymedicineAnimalsIpomoea batatasBinding sitePlant DiseasesBinding SitesChymotrypsinBacillus thuringiensis ToxinsEcologybiologyfungiTrypsinbiology.organism_classificationColeopteraEndotoxinsLarvabiology.proteinPEST analysisFood ScienceBiotechnologymedicine.drugApplied and Environmental Microbiology
researchProduct

Immunohistochemical Detection of Binding of Cryia Crystal Proteins of Bacillus thuringiensis in Highly Resistant Strains of Plutella xylostella (L.) …

1995

We detected binding of insecticidal crystal proteins from Bacillus thuringiensis in one susceptible strain and six resistant strains of diamondback moth, Plutella xylostella, from Hawaii. Immunohistochemical tests with tissue sections from larval midguts showed specific binding of CryIA(a), CryIA(b), and CryIA(c) to brush border membranes. CryIE, which is not toxic to P. xylostella, did not bind to midgut tissues. Larvae from one of the resistant strains ingested extremely high concentrations of a commercial formulation containing the three CryIA proteins without suffering midgut cell damage or mortality. This same resistant strain had previously been found to have greatly reduced binding o…

Brush borderBacterial ToxinsBacillus thuringiensisBiophysicsMothsHemolysin ProteinsBiochemistryEpitheliumHawaiiInsecticide ResistanceHemolysin ProteinsBacterial ProteinsIn vivoBacillus thuringiensisBotanyAnimalsPest Control BiologicalMolecular BiologyDiamondback mothBacillus thuringiensis ToxinsMicrovillibiologyStrain (chemistry)fungiPlutellaMidgutCell Biologybiology.organism_classificationImmunohistochemistryMolecular biologyEndotoxinsLarvaBiochemical and Biophysical Research Communications
researchProduct

Selective inhibition of binding of Bacillus thuringiensis Cry1Ab toxin to cadherin-like and aminopeptidase proteins in brush-border membranes and dis…

2007

Binding analyses with denatured epithelial membrane proteins from Bt (Bacillus thuringiensis) demonstrated at least two kinds of proteins, APNs (aminopeptidases N) and cadherin-like proteins, as possible receptors for the Cry1A class of Bt toxins. Two alternative models have been proposed, both based on initial toxin binding to a cadherin-like protein, but one involving APN and the other not. We have used two Bombyx mori strains (J65 and Kin), which are highly susceptible to Cry1Ab, to study the role of these two types of receptors on Cry1Ab toxin binding and cytotoxicity by means of the inhibitory effect of antibodies. BBMVs (brush-border membrane vesicles) of strain J65 incubated with lab…

Brush borderBacterial ToxinsBacillus thuringiensisCD13 Antigensmedicine.disease_causeBiochemistryAminopeptidaseAminopeptidasesAntibodiesHemolysin ProteinsBacterial ProteinsBacillus thuringiensismedicineAnimalsIntestinal MucosaReceptorMolecular BiologyMembranesbiologyBacillus thuringiensis ToxinsMicrovilliCadherinToxinfungiEpithelial CellsCell Biologybiology.organism_classificationBombyxMolecular biologyEndotoxinsMembrane proteinBiochemistrybiology.proteinBiological AssayAntibodyProtein BindingThe Biochemical journal
researchProduct