Search results for "Energy Storage."
showing 10 items of 228 documents
Graphene in lithium ion battery cathode materials: A review
2013
Abstract Graphene is a relatively new and promising material, displaying a unique array of physical and chemical properties. Although considered to be especially promising for the use in energy storage applications, graphene has only recently been implemented as an electron conducting additive for lithium ion battery cathode materials. In current studies graphene is found to significantly improve cathode electrochemical performance. As the charge capacity, rate capability and cyclability of lithium ion batteries are still in ever-remaining need of improvement, this article examines the prospects of graphene implementation into lithium ion battery cathodes to meet such demands. The existing …
Metal Hydride-Based Hydrogen Storage Tank Coupled with an Urban Concept Fuel Cell Vehicle: Off Board Tests
2018
Modelling, Simulation and Characterization of a Supercapacitor in Automotive Applications
2022
In the energy storage field, supercapacitors (SCs) are gaining more and more attention thanks to features such as high-power density, high life cycles and lack of maintenance. In this article, an improved SC three-branches model which considers the residual charge phenomenon is presented. The procedure to estimate the model parameters and the related experimental set-up are presented. The parameter estimation procedure is repeated for several SCs of the same type. The average parameters are then obtained and used as initial guesses for a recursive least square optimization algorithm, to increase the accuracy of the model. The model of a single SC is then extended to SC banks, testing differ…
A novel heuristics-based energy management system for a multi-carrier hub enriched with solid hydrogen storage
2014
In this paper, an efficient optimization algorithm for the energy management of a grid-connected energy hub plant is proposed. The Simulated Annealing algorithm is adopted for the solution of the energy management problem aiming at the profit maximization for the owner of the energy hub plant. The use of a heuristic algorithm was required by the non-linearity of the efficiencies of each component in the energy transformation stages. The proposed heuristics is applied to a large energy hub, corresponding to the simulation of the test-bed that is being designed and developed inside the ongoing INGRID European research project.
Load match optimisation of a residential building case study: A cross-entropy based electricity storage sizing algorithm
2015
Abstract The EU EPBD recast regulation marked the application of the net zero energy building (Net ZEB) concept in all fields of building construction in Europe as a building able to generate as much energy as it consumes over a selected time frame. A more detailed insight is however needed, as even if a building achieves a long-term energy balance between energy generated and consumed, smaller time scales must also be considered. For example, from the utility’s point of view, if a Net ZEB is a heavy consumer in the winter, it will appear to be quite similar to a conventional building, requiring the use of additional generation. The increase in the generation-load match means reducing the s…
A NEW REPRESENTATION OF ENERGY STORAGE SYSTEMS OPERATION USING FOURIER THEORY IN OPTIMAL SMART GRIDS MANAGEMENT
2012
This paper investigates the possibility to use a new modeling of Energy Storage Systems based on zero integral functions. Such functions represent the course of the energy level stored in batteries during the solution of optimal management problems in smart-grids. Storage devices, such as all the other components that are required to meet an integral capacity constraint along the dispatch time, must show the same State of Charge at the start and at the end of the timeframe considered for operation. In this paper, a set of sinusoidal functions have been used for the synthesis of the charge and discharge course of energy Storage Systems. Such representation allows to eliminate the difficult c…
Modelling energy storage systems using Fourier analysis: An application for smart grids optimal management
2014
In this paper, a new and efficient model for variables representation, named F-coding, in optimal power dispatch problems for smart electrical distribution grids is proposed. In particular, an application devoted to optimal energy dispatch of Distributed Energy Resources including ideal storage devices is here considered. Electrical energy storage systems, such as any other component that must meet an integral capacity constraint in optimal dispatch problems, have to show the same energy level at the beginning and at the end of the considered timeframe for operation. The use of zero-integral functions, such as sinusoidal functions, for the synthesis of the charge and discharge course of bat…
The Blockchain in Microgrids for Transacting Energy and Attributing Losses
2017
In recent years novel models for energy distribu- tion appeared and islanded microgrids quest for new ways to exchange energy between consumers and producers without the need of central authorities. The blockchain mechanism has emerged as a distributed solution for recording energy transactions in power systems. The blockchain has been used to permit users bartering and selling energy and to keep track of such exchanges without exposing them to tampering. In this work, we consider a novel application of the blockchain in islanded microgrids that includes also annotating energy losses caused by energy transactions, in order to have a more realistic matching between the physical status of the…
Life cycle assessment of solar communities
2020
Abstract This study presents the comparison of the life cycle performance of two different urban energy systems, applied to a large mixed-use community, in Calgary (Canada). The two systems investigated consist of an energy efficient conventional system, using heat pumps for heating, cooling and domestic hot water; the second design widely deploys solar thermal panels coupled to district heating infrastructure and a borehole seasonal thermal storage. The analysis is based on the Life Cycle Assessment methodology and includes the stages of raw materials and energy supply, system manufacturing, use stage of the systems, generation and use of energy on-site, maintenance and components’ substit…
Electrochemically Controlled Ion Dynamics in Porphyrin Nanostructures
2020
peer-reviewed The full text of this article will not be available in ULIR until the embargo expires on the 22/07/2021 The dynamics of ion intercalation into solid matrices influences the performance of key components in most energy storage devices (Li-ion batteries, supercapacitors, fuel cells, etc.). Electrochemical methods provide key information on the thermodynamics and kinetics of these ion-transfer processes but are restricted to matrices supported on electronically conductive substrates. In this article, the electrified liquid|liquid interface is introduced as an ideal platform to probe the thermodynamics and kinetics of reversible ion intercalation with nonelectronically active matr…