Search results for "Energy conversion"
showing 10 items of 134 documents
Enhanced power-conversion efficiency in organic solar cells incorporating copolymeric phase-separation modulators
2018
A new class of copolymers containing oligothiophene moieties with different lengths and fullerene units have been designed and prepared by an easy and inexpensive one-step synthetic approach. The incorporation of small quantities of these copolymers into bulk heterojunction (BHJ) solar cells with donor regioregular polythiophene (P3HT) and an acceptor fullerene derivate (PCBM) results in good control of the phase separation process without further affecting the BHJ optoelectronic properties. Indeed, under thermal annealing these copolymers allow the modulation of the growth of domains whose size depends on the length of the copolymer repetitive units. Domain size on the same length scale as…
Phenothiazine dye featuring encapsulated insulated molecular wire as auxiliary donor for high photovoltage of dye-sensitized solar cells by suppressi…
2019
Abstract Two efficient dye-sensitized solar cells have been fabricated by two novel D–D–π–A phenothiazine-based organic dyes (PH2 and PH3) with an encapsulated insulated molecular wire (EIMW) as an auxiliary donor. The cell sensitized by PH2 with EIMW as an auxiliary donor shows a much higher photovoltage (Voc) relative to the reference dye PH1 without EIMW, because the former dye can inhibit dye aggregation and suppress the charge recombination effectively. The results show that the cell sensitized by PH2 with co-adsorption of chenodeoxycholic acid obtains a high power conversion efficiency, even higher than that of the cell based on N719. Thus, an effective way to increase the photovoltag…
Ion Specificity on Electric Energy Generated by Flowing Water Droplets
2018
The development of energy-conversion devices using water movement has actively progressed. Ionovoltaic devices, which are driven by ion dynamics, show ion specificity by which different ions with identical charges show different output performance. However, the ion specificity remains poorly understood because the influence of the ion species on generated electric signals is not elucidated. The ion specificity in electric signals induced by flowing water droplet was investigated in terms of its relationship with the potential profile across the solid-liquid interface.
Multifunctional derivatives of dimethoxy-substituted triphenylamine containing different acceptor moieties
2020
This project has received funding from the Research Council of Lithuania (LMTLT), Agreement No. [S-LZ-19-2]. This research was funded by the Région Centre, the Tunisian ministry of research, University of Monastir and the French ministry of Higher Education and Research. J. Bouclé would like to thank the Sigma-Lim LabEx environment for financial supports, and the PLATINOM facility at XLIM laboratory regarding device fabrication and characterizations. DG acknowledges the Lithuanian Academy of Sciences for the financial support.
Optimizing Energy Transduction of Fluctuating Signals with Nanofluidic Diodes and Load Capacitors
2018
[EN] The design and experimental implementation of hybrid circuits is considered allowing charge transfer and energy conversion between nanofluidic diodes in aqueous ionic solutions and conventional electronic elements such as capacitors. The fundamental concepts involved are reviewed for the case of fluctuating zero-average external potentials acting on single pore and multipore membranes. This problem is relevant to electrochemical energy conversion and storage, the stimulus-response characteristics of nanosensors and actuators, and the estimation of the accumulative effects caused by external signals on biological ion channels. Half-wave and full-wave voltage doublers and quadruplers can…
A bacteriochlorin-diketopyrrolopyrrole triad as a donor for solution-processed bulk heterojunction organic solar cells
2019
We have designed an A–π–D–π–A small-molecule triad consisting of a bacteriochlorin (BC) donor central core linked with two diketopyrrolopyrrole (DPP) acceptors via ethynyl bridges (BC-DPP-1). BC-DPP-1 has a narrow optical bandgap of 1.38 eV with highest occupied molecular orbital and lowest unoccupied molecular orbital energy levels of −4.93 eV and −3.40 eV, respectively, and it was used as an electron donor along with [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) as an acceptor for solution-processed small-molecule organic solar cells. After optimizing the weight ratio between BC-DPP-1 and PC71BM and pyridine as a solvent additive and subsequent solvent vapor annealing using THF, an …
Donor/Acceptor Heterojunction Organic Solar Cells
2020
The operation and the design of organic solar cells with donor/acceptor heterojunction structure and exciton blocking layer is outlined and results of their initial development and assessment are reported. Under halogen lamp illumination with 100 mW/cm2 incident optical power density, the devices exhibits an open circuit voltage VOC = 0.45 V, a short circuit current density JSC between 2 and 2.5 mA/cm2 with a fill factor FF &asymp
Nonfullerene Polymer Solar Cells Reaching a 9.29% Efficiency Using a BODIPY-Thiophene Backboned Donor Material
2018
A conjugated polymer donor containing BODIPY-thiophene dyads in the backbone, P(BdP-EHT), combined with a low bandgap nonfullerene acceptor (SMDPP) consisting of carbazole and diketopyrrolopyrrole units linked with a tetracyanobutadiene acceptor π-linker, was used to design bulk heterojunction polymer solar cells. After the optimization of the donor to acceptor weight ratio and solvent vapor annealing of the P(BdP-EHT):SMDPP active layer, the resulting polymer solar cell showed an overall power conversion efficiency of 9.29%, which is significantly higher than that for the polymer solar cell based on PC71BM (7.41%) processed under identical conditions. This improved power conversion efficie…
New BODIPY derivatives with triarylamine and truxene substituents as donors for organic bulk heterojunction photovoltaic cells
2021
Abstract We have designed two new BODIPY derivatives, denoted as 6a and 6b, substituted with truxene moiety and triphenylamine (TPA) unit groups and have investigated their optical and electrochemical properties. Dyes 6a and 6b were employed as donor along with PC71BM or Y6 as acceptor for the fabrication of binary and ternary organic solar cells. After optimization of the binary and ternary active layers, we have achieved over all power conversion efficiency (PCE) of 11.37 % and 13.32% for 6a:PC71BM:Y6 and 6b:PC71BM:Y6 ternary organic solar cells, respectively, which are higher than the binary organic solar cells based on PC71BM or Y6 acceptor. The higher power conversion efficiency for te…
Synergies and compromises between charge and energy transfers in three-component organic solar cells
2020
In this paper, we developed different three-component organic heterojunction structures supported by PET/ITO substrates with the aim to study the possible synergies and/or compromises between charge transfer (CT) and energy transfer (ET) processes in organic solar cells (OSCs). As components, we employed poly(3-hexylthiophene-2,5-diyl) (P3HT; donor), [6,6]-phenyl-C61-butyric acid methyl ester (PCBM; acceptor) and poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT) that is known to give good ET to P3HT. At first, we observed that in a planar heterojunction (PHJ) solar cell, F8BT has to be properly located in between P3HT and PCBM to get a cascade energy level configuration allowing for a b…