Search results for "Energy conversion"

showing 10 items of 134 documents

Enhanced power-conversion efficiency in organic solar cells incorporating copolymeric phase-separation modulators

2018

A new class of copolymers containing oligothiophene moieties with different lengths and fullerene units have been designed and prepared by an easy and inexpensive one-step synthetic approach. The incorporation of small quantities of these copolymers into bulk heterojunction (BHJ) solar cells with donor regioregular polythiophene (P3HT) and an acceptor fullerene derivate (PCBM) results in good control of the phase separation process without further affecting the BHJ optoelectronic properties. Indeed, under thermal annealing these copolymers allow the modulation of the growth of domains whose size depends on the length of the copolymer repetitive units. Domain size on the same length scale as…

Materials scienceFullereneOrganic solar cellRenewable Energy Sustainability and the EnvironmentExcitonEnergy conversion efficiency02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesAcceptorPolymer solar cell0104 chemical scienceschemistry.chemical_compoundchemistryChemical engineeringCopolymerPolythiopheneGeneral Materials Science0210 nano-technologyorganic solar cells plastic solar cells phase separation copolymers modulators efficiencyJournal of Materials Chemistry A
researchProduct

Phenothiazine dye featuring encapsulated insulated molecular wire as auxiliary donor for high photovoltage of dye-sensitized solar cells by suppressi…

2019

Abstract Two efficient dye-sensitized solar cells have been fabricated by two novel D–D–π–A phenothiazine-based organic dyes (PH2 and PH3) with an encapsulated insulated molecular wire (EIMW) as an auxiliary donor. The cell sensitized by PH2 with EIMW as an auxiliary donor shows a much higher photovoltage (Voc) relative to the reference dye PH1 without EIMW, because the former dye can inhibit dye aggregation and suppress the charge recombination effectively. The results show that the cell sensitized by PH2 with co-adsorption of chenodeoxycholic acid obtains a high power conversion efficiency, even higher than that of the cell based on N719. Thus, an effective way to increase the photovoltag…

Materials scienceGeneral Chemical EngineeringEnergy conversion efficiency02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnologyPhotochemistry01 natural sciences0104 chemical sciencesDye-sensitized solar cellchemistry.chemical_compoundMolecular wirechemistryChenodeoxycholic acidPhenothiazineElectrochemistry0210 nano-technologyCell basedElectrochimica Acta
researchProduct

Ion Specificity on Electric Energy Generated by Flowing Water Droplets

2018

The development of energy-conversion devices using water movement has actively progressed. Ionovoltaic devices, which are driven by ion dynamics, show ion specificity by which different ions with identical charges show different output performance. However, the ion specificity remains poorly understood because the influence of the ion species on generated electric signals is not elucidated. The ion specificity in electric signals induced by flowing water droplet was investigated in terms of its relationship with the potential profile across the solid-liquid interface.

Materials scienceGeneral Medicine02 engineering and technologyGeneral ChemistryEnergy conversion devices010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesCatalysis0104 chemical sciencesIonElectric signalElectric energyChemical physics0210 nano-technologyAngewandte Chemie International Edition
researchProduct

Multifunctional derivatives of dimethoxy-substituted triphenylamine containing different acceptor moieties

2020

This project has received funding from the Research Council of Lithuania (LMTLT), Agreement No. [S-LZ-19-2]. This research was funded by the Région Centre, the Tunisian ministry of research, University of Monastir and the French ministry of Higher Education and Research. J. Bouclé would like to thank the Sigma-Lim LabEx environment for financial supports, and the PLATINOM facility at XLIM laboratory regarding device fabrication and characterizations. DG acknowledges the Lithuanian Academy of Sciences for the financial support.

Materials scienceKerr effectGeneral Chemical EngineeringGeneral Physics and AstronomyTwo photon absorption effect02 engineering and technology010402 general chemistryPhotochemistryTriphenylamine7. Clean energy01 natural sciencesTwo-photon absorptionRhodanine-3-acetic acidAcetic acidchemistry.chemical_compoundCyanoacrylic acidDimethoxy-substituted triphenylamineKerr effect:NATURAL SCIENCES:Physics [Research Subject Categories]General Materials Science[SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/MicroelectronicsComputingMilieux_MISCELLANEOUSGeneral Environmental Science[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Energy conversion efficiencyGeneral Engineering021001 nanoscience & nanotechnologyAcceptor3. Good health0104 chemical sciencesDye-sensitized solar cellchemistry[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]General Earth and Planetary SciencesDye-sensitized solar cell0210 nano-technologyGlass transition
researchProduct

Optimizing Energy Transduction of Fluctuating Signals with Nanofluidic Diodes and Load Capacitors

2018

[EN] The design and experimental implementation of hybrid circuits is considered allowing charge transfer and energy conversion between nanofluidic diodes in aqueous ionic solutions and conventional electronic elements such as capacitors. The fundamental concepts involved are reviewed for the case of fluctuating zero-average external potentials acting on single pore and multipore membranes. This problem is relevant to electrochemical energy conversion and storage, the stimulus-response characteristics of nanosensors and actuators, and the estimation of the accumulative effects caused by external signals on biological ion channels. Half-wave and full-wave voltage doublers and quadruplers can…

Materials scienceNanotechnology02 engineering and technology010402 general chemistry01 natural scienceslaw.inventionBiomaterialsSingle and multipore membraneslawNanosensorEnergy transformationGeneral Materials ScienceNanofluidic diodesElectronic circuitDiodeVoltage doublerbusiness.industryNanotecnologiaGeneral Chemistry021001 nanoscience & nanotechnologyElectrochemical energy conversionEnergy conversion0104 chemical sciencesCapacitorFISICA APLICADAOptoelectronicsIontronicsEnergiaHybrid circuits0210 nano-technologyActuatorbusinessBiotechnology
researchProduct

A bacteriochlorin-diketopyrrolopyrrole triad as a donor for solution-processed bulk heterojunction organic solar cells

2019

We have designed an A–π–D–π–A small-molecule triad consisting of a bacteriochlorin (BC) donor central core linked with two diketopyrrolopyrrole (DPP) acceptors via ethynyl bridges (BC-DPP-1). BC-DPP-1 has a narrow optical bandgap of 1.38 eV with highest occupied molecular orbital and lowest unoccupied molecular orbital energy levels of −4.93 eV and −3.40 eV, respectively, and it was used as an electron donor along with [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) as an acceptor for solution-processed small-molecule organic solar cells. After optimizing the weight ratio between BC-DPP-1 and PC71BM and pyridine as a solvent additive and subsequent solvent vapor annealing using THF, an …

Materials scienceOrganic solar cellBand gapPhotovoltaic systemEnergy conversion efficiencyAnalytical chemistry02 engineering and technologyGeneral Chemistry010402 general chemistry021001 nanoscience & nanotechnology7. Clean energy01 natural sciencesAcceptorPolymer solar cell0104 chemical sciencesMaterials Chemistry0210 nano-technologyTernary operationHOMO/LUMOJournal of Materials Chemistry C
researchProduct

Donor/Acceptor Heterojunction Organic Solar Cells

2020

The operation and the design of organic solar cells with donor/acceptor heterojunction structure and exciton blocking layer is outlined and results of their initial development and assessment are reported. Under halogen lamp illumination with 100 mW/cm2 incident optical power density, the devices exhibits an open circuit voltage VOC = 0.45 V, a short circuit current density JSC between 2 and 2.5 mA/cm2 with a fill factor FF &asymp

Materials scienceOrganic solar cellComputer Networks and Communicationslcsh:TK7800-836002 engineering and technology010402 general chemistrySettore ING-INF/01 - Elettronica01 natural scienceslaw.inventionorganic photovoltaicexciton blocking layerdonor/acceptor heterojuntionlawElectrical and Electronic Engineeringbusiness.industryOpen-circuit voltagelcsh:ElectronicsEnergy conversion efficiencyorganic solar cellsHeterojunction021001 nanoscience & nanotechnologyAcceptor0104 chemical sciencesHalogen lampHardware and ArchitectureControl and Systems EngineeringOrganic solar celllifetime and degradationSignal ProcessingOptoelectronicsQuantum efficiencyorganic photovoltaics0210 nano-technologybusinessShort circuitElectronics
researchProduct

Nonfullerene Polymer Solar Cells Reaching a 9.29% Efficiency Using a BODIPY-Thiophene Backboned Donor Material

2018

A conjugated polymer donor containing BODIPY-thiophene dyads in the backbone, P(BdP-EHT), combined with a low bandgap nonfullerene acceptor (SMDPP) consisting of carbazole and diketopyrrolopyrrole units linked with a tetracyanobutadiene acceptor π-linker, was used to design bulk heterojunction polymer solar cells. After the optimization of the donor to acceptor weight ratio and solvent vapor annealing of the P(BdP-EHT):SMDPP active layer, the resulting polymer solar cell showed an overall power conversion efficiency of 9.29%, which is significantly higher than that for the polymer solar cell based on PC71BM (7.41%) processed under identical conditions. This improved power conversion efficie…

Materials scienceOrganic solar cellOpen-circuit voltageCarbazoleEnergy conversion efficiencyEnergy Engineering and Power Technology02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnologyPhotochemistry7. Clean energy01 natural sciencesAcceptorPolymer solar cell0104 chemical scienceschemistry.chemical_compoundchemistryMaterials ChemistryElectrochemistryChemical Engineering (miscellaneous)Electrical and Electronic Engineering0210 nano-technologyHOMO/LUMOShort circuitACS Applied Energy Materials
researchProduct

New BODIPY derivatives with triarylamine and truxene substituents as donors for organic bulk heterojunction photovoltaic cells

2021

Abstract We have designed two new BODIPY derivatives, denoted as 6a and 6b, substituted with truxene moiety and triphenylamine (TPA) unit groups and have investigated their optical and electrochemical properties. Dyes 6a and 6b were employed as donor along with PC71BM or Y6 as acceptor for the fabrication of binary and ternary organic solar cells. After optimization of the binary and ternary active layers, we have achieved over all power conversion efficiency (PCE) of 11.37 % and 13.32% for 6a:PC71BM:Y6 and 6b:PC71BM:Y6 ternary organic solar cells, respectively, which are higher than the binary organic solar cells based on PC71BM or Y6 acceptor. The higher power conversion efficiency for te…

Materials scienceOrganic solar cellRenewable Energy Sustainability and the EnvironmentEnergy conversion efficiencyPhotochemistryTriphenylamineAcceptorPolymer solar cellchemistry.chemical_compoundchemistryMoietyGeneral Materials ScienceBODIPYTernary operationSolar Energy
researchProduct

Synergies and compromises between charge and energy transfers in three-component organic solar cells

2020

In this paper, we developed different three-component organic heterojunction structures supported by PET/ITO substrates with the aim to study the possible synergies and/or compromises between charge transfer (CT) and energy transfer (ET) processes in organic solar cells (OSCs). As components, we employed poly(3-hexylthiophene-2,5-diyl) (P3HT; donor), [6,6]-phenyl-C61-butyric acid methyl ester (PCBM; acceptor) and poly(9,9-dioctylfluorene-alt-benzothiadiazole) (F8BT) that is known to give good ET to P3HT. At first, we observed that in a planar heterojunction (PHJ) solar cell, F8BT has to be properly located in between P3HT and PCBM to get a cascade energy level configuration allowing for a b…

Materials scienceOrganic solar cellbusiness.industryEnergy conversion efficiencyGeneral Physics and AstronomyHeterojunctionCharge (physics)02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesAcceptor0104 chemical scienceslaw.inventionActive layerPlanarlawSolar cellOptoelectronicsPhysical and Theoretical Chemistry0210 nano-technologybusinessorganic solar cells transparent heterojunctionPhysical Chemistry Chemical Physics
researchProduct