Search results for "Energy-transfer"
showing 8 items of 18 documents
Characterization of Flux-Grown SmxNd1–xVO4 Compounds and High-Pressure Behavior for x = 0.5
2019
The crystal structure and the vibrational and optical characteristics of flux-grown mixed lanthanide vanadate compounds SmxNd1–xVO4 (x = 0, 0.1, 0.25, 0.5, 0.75 and 1) are reported. A linear, monot...
Dual Cherenkov Radiation-Induced Near-Infrared Luminescence Imaging and Photodynamic Therapy toward Tumor Resection
2020
International audience; Cherenkov radiation (CR), the blue light seen in nuclear reactors, is emitted by some radiopharmaceuticals. This study showed that (1) a portion of CR could be transferred in the region of the optical spectrum, where biological tissues are most transparent: as a result, upon radiance amplification in the near-infrared window, the detection of light could occur twice deeper in tissues than during classical Cherenkov luminescence imaging and (2) Cherenkov-photodynamic therapy (CR-PDT) on cells could be achieved under conditions mimicking unlimited depth using the CR-embarked light source, which is unlike standard PDT, where light penetration depth is limited in biologi…
Carrier-induced quenching processes on the erbium luminescence in silicon nanocluster devices
2006
The luminescence-quenching processes limiting quantum efficiency in Er-doped silicon nanocluster light-emitting devices are investigated and identified. It is found that carrier injection, while needed to excite Er ions through electron-hole recombination, at the same time produces an efficient nonradiative Auger deexcitation with trapped carriers. This phenomenon is studied in detail and, on the basis of its understanding, we propose device structures in which sequential injection of electrons and holes can improve quantum efficiency by avoiding Auger processes. © 2006 The American Physical Society.
Silicon-based light-emitting devices: Properties and applications of crystalline, amorphous and er-doped nanoclusters
2006
In this paper, we summarize the results of an extensive investigation on the properties of MOS-type light-emitting devices based on silicon nanostructures. The performances of crystalline, amorphous, and Er-doped Si nanostructures are presented and compared. We show that all devices are extremely stable and robust, resulting in an intense room temperature electroluminescence (EL) at around 900 nm or at 1.54 μm. Amorphous nanoclusters are more conductive than the crystalline counterpart. In contrast, nonradiative processes seem to be more efficient for amorphous clusters resulting in a lower quantum efficiency. Erbium doping results in the presence of an intense EL at 1.54 μm with a concomit…
Vibrational and rotational collisional relaxation in CO2–Ar and CO2–He mixtures studied by stimulated Raman-infrared double resonance
1999
0021-9606; The collisional relaxation among vibrational levels of the Fermi dyad of CO2 mixed with Ar and He (10% CO2, 90% rare gas) has been studied at room temperature with a double resonance experiment. Stimulated Raman effect from the ground state achieved the pumping process with a Nd:YAG laser and a pulse amplified dye laser. After pumping the v(1) or 2v(2)(Sigma(+)g) level, a cw CO2 laser was used to probe either the depopulation rates of the pumped levels (vibrationally or rotationally resolved) or the energy transfer rates to neighboring states. The vibrational energy relaxation has been studied from experimental depopulation of v(1) and population of 2v(2) levels through a five-le…
Determination of Temperature by Stimulated Raman Scattering of Molecular Nitrogen, Oxygen, and Carbon-Dioxide
1993
0721-7269; We have determined the temperature from SRS spectra of N2-N2, N2-CO2, O2-O2, and CO2-CO2 recorded in wide pressure and temperature ranges. The fitting procedure takes simultaneously into account the Dicke effect and motional narrowing. We have quantified the accuracy of the MEG and ECS-P models for rotational relaxation. The temperature extracted from each model is compared with thermocouple measurements. The influence of vibrational broadening and shifting is discussed in detail.
Measurements of Collisional Line Widths in the Stimulated Raman Q-Branch of the v1 Band of Silane
1990
0377-0486; Self-broadened widths of 28SiH4 in the v1 Q-branch have been measured at room temperature (295 K) using high-resolution stimulated Raman spectroscopy. These collisional widths have been obtained by fitting a superposition of Voigt profiles to the experimental spectra in the pressure range 28-154 Torr. No evidence for line mixing within the tetrahedral components of a Q(J) line has been found. The line broadening coefficients for J up to 13 depend weakly on the rotational quantum number. The mean value is 103.7 x 10(-3) cm-1 atm-1.
Synthesis, Electrochemistry, and Photophysics of Aza-BODIPY Porphyrin Dyes
2016
International audience; The synthesis of dyad and triad aza-BODIPY-porphyrin systems in two steps starting from an aryl-substituted aza-BODIPY chromophore is described. The properties of the resulting aza-BODIPY-porphyrin conjugates have been extensively investigated by means of electrochemistry, spectroelectrochemistry, and absorption/emission spectroscopy. Fluorescence measurements have revealed a dramatic loss of luminescence intensity, mainly due to competitive energy transfer and photoinduced electron transfer involving charge separation followed by recombination.