Search results for "Ensemble"

showing 10 items of 162 documents

A weighted distance-based approach with boosted decision trees for label ranking

2023

Label Ranking (LR) is an emerging non-standard supervised classification problem with practical applications in different research fields. The Label Ranking task aims at building preference models that learn to order a finite set of labels based on a set of predictor features. One of the most successful approaches to tackling the LR problem consists of using decision tree ensemble models, such as bagging, random forest, and boosting. However, these approaches, coming from the classical unweighted rank correlation measures, are not sensitive to label importance. Nevertheless, in many settings, failing to predict the ranking position of a highly relevant label should be considered more seriou…

Artificial IntelligenceDecision treesGeneral EngineeringLabel rankingWeighted ranking dataEnsemble methodBoostingComputer Science ApplicationsExpert Systems with Applications
researchProduct

Multi-layer intrusion detection system with ExtraTrees feature selection, extreme learning machine ensemble, and softmax aggregation

2019

Abstract Recent advances in intrusion detection systems based on machine learning have indeed outperformed other techniques, but struggle with detecting multiple classes of attacks with high accuracy. We propose a method that works in three stages. First, the ExtraTrees classifier is used to select relevant features for each type of attack individually for each (ELM). Then, an ensemble of ELMs is used to detect each type of attack separately. Finally, the results of all ELMs are combined using a softmax layer to refine the results and increase the accuracy further. The intuition behind our system is that multi-class classification is quite difficult compared to binary classification. So, we…

Artificial intelligencelcsh:Computer engineering. Computer hardwareExtreme learning machineEnsemble methodsComputer scienceBinary numberlcsh:TK7885-7895Feature selection02 engineering and technologyIntrusion detection systemlcsh:QA75.5-76.95Machine learning0202 electrical engineering electronic engineering information engineeringVDP::Teknologi: 500::Informasjons- og kommunikasjonsteknologi: 550Multi layerExtreme learning machinebusiness.industryIntrusion detection system020206 networking & telecommunicationsPattern recognitionComputer Science ApplicationsBinary classificationFeature selectionSignal ProcessingSoftmax function020201 artificial intelligence & image processinglcsh:Electronic computers. Computer scienceArtificial intelligencebusinessClassifier (UML)EURASIP Journal on Information Security
researchProduct

Cloud screening with combined MERIS and AATSR images

2009

This paper presents a cloud screening algorithm based on ensemble methods that exploits the combined information from both MERIS and AATSR instruments on board ENVISAT in order to improve current cloud masking products for both sensors. The first step is to analyze the synergistic use of MERIS and AATSR images in order to extract some physically-based features increasing the separability of clouds and surface. Then, several artificial neural networks are trained using different sets of input features and different sets of training samples depending on acquisition and surface conditions. Finally, outputs of the trained neural networks are combined at the decision level to construct a more ac…

Artificial neural networkContextual image classificationComputer sciencebusiness.industryRadiometryCloud computingAATSRSnowSpectroscopybusinessEnsemble learningClassifier (UML)Remote sensing2009 IEEE International Geoscience and Remote Sensing Symposium
researchProduct

Automatic Identification of Watermarks and Watermarking Robustness Using Machine Learning Techniques

2021

The goal of this article is to propose a framework for automatic identification of watermarks from modified host images. The framework can be used with any watermark embedding/extraction system and is based on models built using machine learning (ML) techniques. Any supervised ML approach can be theoretically chosen. An important part of our framework consists in building a stand-alone module, independent of the watermarking system, for generating two types of watermarks datasets. The first type of datasets, that we will name artificially datasets, is generated from the original images by adding noise with an imposed maximum level of noise. The second type contains altered watermarked image…

Artificial neural networkbusiness.industryComputer scienceMachine learningcomputer.software_genreEnsemble learningSupport vector machineIdentification (information)Robustness (computer science)Computer Science::MultimediaNoise (video)Artificial intelligencebusinessHost (network)computerDigital watermarking
researchProduct

MACC regional multi-model ensemble simulations of birch pollen dispersion in Europe

2015

Abstract. This paper presents the first ensemble modelling experiment in relation to birch pollen in Europe. The seven-model European ensemble of MACC-ENS, tested in trial simulations over the flowering season of 2010, was run through the flowering season of 2013. The simulations have been compared with observations in 11 countries, all members of the European Aeroallergen Network, for both individual models and the ensemble mean and median. It is shown that the models successfully reproduced the timing of the very late season of 2013, generally within a couple of days from the observed start of the season. The end of the season was generally predicted later than observed, by 5 days or more…

Atmospheric Sciencemedicine.medical_specialty010504 meteorology & atmospheric sciencesUrban Mobility & EnvironmentClimateAerobiologyUrbanisation010501 environmental sciencesmedicine.disease_cause01 natural sciencesAerobiologyFloweringlcsh:ChemistryPollenddc:550medicineStatistical dispersionAerosol0105 earth and related environmental sciencesEnsemble forecastingEnsemble averageModelingEnsemble forecastingCAS - Climate Air and SustainabilityMiljövetenskaplcsh:QC1-999EuropeBirch pollenlcsh:QD1-999HabitatClimatology[SDE]Environmental SciencesPollenLate seasonEnvironmental scienceELSS - Earth Life and Social SciencesEnvironment & Sustainabilitylcsh:PhysicsEnvironmental Sciences
researchProduct

Critical end point behaviour in a binary fluid mixture

1997

We consider the liquid-gas phase boundary in a binary fluid mixture near its critical end point. Using general scaling arguments we show that the diameter of the liquid-gas coexistence curve exhibits singular behaviour as the critical end point is approached. This prediction is tested by means of extensive Monte-Carlo simulations of a symmetrical Lennard-Jones binary mixture within the grand canonical ensemble. The simulation results show clear evidence for the proposed singularity, as well as confirming a previously predicted singularity in the coexistence chemical potential [Fisher and Upton, Phys. Rev. Lett. 65, 2402 (1990)]. The results suggest that the observed singularities, particula…

BinodalPhase boundaryBinary fluidGrand canonical ensembleSingularityStatistical Mechanics (cond-mat.stat-mech)Binary numberFOS: Physical sciencesGravitational singularityStatistical physicsScalingCondensed Matter - Statistical MechanicsMathematics
researchProduct

Convolution-based ensemble learning algorithms to estimate the bond strength of the corroded reinforced concrete

2022

Reinforced concrete bond strength deterioration is one of the most serious problems in the construction industry. It is one of the most common factors impacting structural deterioration and the major cause of premature decadence of reinforced concrete structures. Therefore, developing an accurate model with the lowest variance and high reliability for the bond strength of corroded reinforced concrete is very important. The current work evaluates the efficiency of convolution-based ensemble learning algorithms. To address these issues, convolution-based ensemble learning models are developed using a database collected from the previous experimental studies of relative bond strength for corro…

Bond strengthCorrosionEnsemble algorithmsSettore ICAR/09 - Tecnica Delle CostruzioniPull-out testCorroded reinforced concreteGeneral Materials ScienceBuilding and ConstructionDeep learning modelCivil and Structural Engineering
researchProduct

Bagging and Boosting with Dynamic Integration of Classifiers

2000

One approach in classification tasks is to use machine learning techniques to derive classifiers using learning instances. The co-operation of several base classifiers as a decision committee has succeeded to reduce classification error. The main current decision committee learning approaches boosting and bagging use resampling with the training set and they can be used with different machine learning techniques which derive base classifiers. Boosting uses a kind of weighted voting and bagging uses equal weight voting as a combining method. Both do not take into account the local aspects that the base classifiers may have inside the problem space. We have proposed a dynamic integration tech…

Boosting (machine learning)Training setbusiness.industryComputer sciencemedia_common.quotation_subjectWeighted votingMachine learningcomputer.software_genreBoosting methods for object categorizationRandom subspace methodComputingMethodologies_PATTERNRECOGNITIONEnsembles of classifiersVotingAdaBoostArtificial intelligenceGradient boostingbusinesscomputermedia_common
researchProduct

Statistical Learning Algorithms to Forecast the Equity Risk Premium in the European Union

2018

With the explosion of “Big Data”, the application of statistical learning models has become popular in multiple scientific areas as well as in marketing, finance or other business disciplines. Nonetheless, there is not yet an abundant literature that covers the application of these learning algorithms to forecast the equity risk premium. In this paper we investigate whether Classification and Regression Trees (CART) algorithms and several ensemble methods, such as bagging, random forests and boosting, improve traditional parametric models to forecast the equity risk premium. In particular, we work with European Monetary Union data for a period that spans from the EMU foundation at the begin…

Boosting (machine learning)business.industryRisk premiumBig dataEnsemble learningRegressionRandom forestParametric modelEconomicsmedia_common.cataloged_instanceEuropean unionbusinessAlgorithmmedia_common
researchProduct

A note on the uniqueness result for the inverse Henderson problem

2019

The inverse Henderson problem of statistical mechanics is the theoretical foundation for many bottom-up coarse-graining techniques for the numerical simulation of complex soft matter physics. This inverse problem concerns classical particles in continuous space which interact according to a pair potential depending on the distance of the particles. Roughly stated, it asks for the interaction potential given the equilibrium pair correlation function of the system. In 1974, Henderson proved that this potential is uniquely determined in a canonical ensemble and he claimed the same result for the thermodynamical limit of the physical system. Here, we provide a rigorous proof of a slightly more …

Canonical ensemble82B21010102 general mathematicsPhysical systemFOS: Physical sciencesStatistical and Nonlinear PhysicsStatistical mechanicsMathematical Physics (math-ph)Inverse problem01 natural sciencesVariational principle0103 physical sciencesApplied mathematics010307 mathematical physicsLimit (mathematics)Uniqueness0101 mathematicsPair potentialMathematical PhysicsMathematics
researchProduct