Search results for "Environmental Engineering"

showing 10 items of 2674 documents

A Plot-scale uncertainty analysis of saturated hydraulic conductivity of a clay soil

2021

Abstract Simulating soil hydrological processes at the plot or field scale requires using spatially representative values of the saturated soil hydraulic conductivity, Ks. Sampling campaigns should yield a reliable mean of Ks with a sustainable workload since measuring Ks at many points is challenging. Uncertainty analysis can be used to determine the lowest number of measurements that yield a mean Ks value with a specified accuracy level. Potential and limitations of this analysis were tested in this investigation for different extents of the sampled area and sampling densities. A clay soil was sampled intensively on two plots (plot area = 44 m2), two dates and using both small (0.15 m in …

010504 meteorology & atmospheric sciencesScale (ratio)0207 environmental engineeringbootstrap methodSampling (statistics)Soil science02 engineering and technology01 natural sciencesConfidence intervalHydraulic conductivitysaturated soil hydraulic conductivityEnvironmental scienceSettore AGR/08 - Idraulica Agraria E Sistemazioni Idraulico-Forestalifine-textured soilsFine-textured soilsimplified falling head technique020701 environmental engineeringClay soilUncertainty analysissaturated soil hydraulic conductivity fine-textured soils simplified falling head technique bootstrap method0105 earth and related environmental sciencesWater Science and Technology
researchProduct

Testing Sediment Connectivity at the Experimental SPA2 Basin, Sicily (Italy)

2017

The concept of sediment delivery can be used as a measure of sediment connectivity, and it can be linked to the structural connectivity (morphological unit, slope length, slope steepness, travel time) of a basin and to the hydrological connectivity (rainfall–runoff processes at morphological unit scale). In this paper, the sediment connectivity concept was tested at basin scale applying SEdiment Delivery Distributed model, which takes into account the hillslope sediment transport, and using sediment yield measurements carried out at SPA2 experimental basin (Sicily, Italy). For the SPA2 basin discretized into morphological units, the SEdiment Delivery Distributed model was first calibrated a…

010504 meteorology & atmospheric sciencesScale (ratio)0208 environmental biotechnologyMagnitude (mathematics)Soil Science02 engineering and technologyExperimental basinDevelopmentStructural basin01 natural sciencesEnvironmental ChemistryDevelopment3304 Education0105 earth and related environmental sciencesGeneral Environmental ScienceSediment connectivityHydrology2300Distributed element modelSEDD modelSediment020801 environmental engineeringErosionSoil erosionWEPPSediment transportSediment deliveryGeology
researchProduct

Testing simple scaling in soil erosion processes at plot scale

2018

Abstract Explaining scale effects for runoff and erosion improves our understanding and simulation ability of hydrological and erosion processes. In this paper, plot scale effects on event runoff per unit area (Qe), sediment concentration (Ce) and soil loss per unit area (SLe) were checked at El Teularet-Sierra de Enguera experimental site in Eastern Spain. The measurements were carried out for 31 events occurring in the years 2005 and 2007 in bare ploughed plots ranging from 1 to 48 m2. The analysis established the scaling relationship by dimensional analysis and self-similarity theory, and tested this relationship at different temporal scales ranging from event to annual scale. The dimens…

010504 meteorology & atmospheric sciencesScale (ratio)Runoff0208 environmental biotechnologySoil scienceNatural rainfall02 engineering and technology01 natural sciencesHydrology (agriculture)Settore AGR/08 - Idraulica Agraria E Sistemazioni Idraulico-ForestaliTemporal scalesScaling0105 earth and related environmental sciencesEarth-Surface ProcessesPlotsSedimentPE&RC020801 environmental engineeringScalePlotSediment concentrationSpatial ecologyErosionSoil erosionEnvironmental scienceSurface runoff
researchProduct

PHYSICS-based retrieval of scattering albedo and vegetation optical depth using multi-sensor data integration

2017

Vegetation optical depth and scattering albedo are crucial parameters within the widely used τ-ω model for passive microwave remote sensing of vegetation and soil. A multi-sensor data integration approach using ICESat lidar vegetation heights and SMAP radar as well as radiometer data enables a direct retrieval of the two parameters on a physics-derived basis. The crucial step within the retrieval methodology is the calculus of the vegetation scattering coefficient KS, where one exact and three approximated solutions are provided. It is shown that, when using the assumption of a randomly oriented volume, the backscatter measurements of the radar provide a sufficient first order estimate and …

010504 meteorology & atmospheric sciencesScattering albedo0208 environmental biotechnologyradiometry02 engineering and technologyretrieval methodologycomputer.software_genre01 natural scienceslaw.inventionlawremote sensing by radarRadaractive-passive microwavesPhysics::Atmospheric and Oceanic PhysicsIndexespassive microwave remote sensingRemote sensingremote sensing by laser beamGeographyLidaroptical radarcrucial parametersmedicine.symptomvegetation scattering coefficientData integrationBackscattervegetation mappingta1171τ-ω modelsoilPhysics::GeophysicsICESat lidar vegetation heightsvegetationmedicineVegetation optical depthbackscatter0105 earth and related environmental sciencesRemote sensingsensor fusionRadiometerScatteringnovel multisensor approachSMAPAlbedoMulti-sensor020801 environmental engineeringradiometer dataVegetation (pathology)multisensor data integration approachcomputerICESatalbedo
researchProduct

Stage–Discharge Relationship for an Upstream Inclined Grid with Transversal Bars

2016

AbstractCheck dams with grids upgrading upstream are often used in mountain rivers, where intense sediment transport and steep slopes occur. In some cases, sloping grids are used in the construction of debris flow breakers. In this paper, the outflow process of an upstream-inclined grid with transversal bars is studied by using the dimensional analysis and the incomplete self-similarity theory. Next, the theoretical analysis shows that a power equation can be used for establishing the stage-discharge equation. The coefficient of the power equation depends on both the slope angle and the void ratio, whereas the exponent depends only on the slope angle. Finally, this deduced stage–discharge r…

010504 meteorology & atmospheric sciencesSelf-similarity0208 environmental biotechnologyGeometryAstrophysics::Cosmology and Extragalactic Astrophysics02 engineering and technologyGrid01 natural sciencesAgricultural and Biological Sciences (miscellaneous)020801 environmental engineeringDebris flowTransversal (combinatorics)Upstream (networking)OutflowGeotechnical engineeringStage (hydrology)Sediment transportGeology0105 earth and related environmental sciencesWater Science and TechnologyCivil and Structural EngineeringJournal of Irrigation and Drainage Engineering
researchProduct

Occurrence, distribution, and risk assessment of pharmerciuticals in wastewater and open surface drains of peri-urban areas: Case study of Juja town,…

2020

Abstract The occurrence of Active Pharmaceutical Ingredients (APIs) in the environment is becoming a major area of concern due to their undesirable effects on non-target organisms. This study investigated the occurrence and risk of contamination by five antibiotics and three antiretrovirals drugs in a fast-growing peri-urban area in Kenya, with inadequate sewer system coverage. Due to poor sewage connectivity and poorly designed decentralized systems, wastewater is directly released in open drains. Water and sediment samples were collected from open surface water drains, while wastewater samples were collected from centralized wastewater treatment plants (WWTP). Solid-phase extraction and u…

010504 meteorology & atmospheric sciencesSewagebusiness.industryHealth Toxicology and MutagenesisEnvironmental engineeringSewageSedimentGeneral Medicine010501 environmental sciencesContaminationWastewaterToxicology01 natural sciencesPollutionKenyaRisk AssessmentWastewaterTandem Mass SpectrometryEnvironmental scienceSewage treatmentEcotoxicitybusinessSurface waterEffluent0105 earth and related environmental sciencesEnvironmental pollution (Barking, Essex : 1987)
researchProduct

Raindrop size distribution and terminal velocity for rainfall erosivity studies. A review

2019

Abstract The knowledge of the rainfall drop size distribution (DSD) at the land surface is essential for understanding precipitation mechanisms affecting soil erosion processes. Rainfall erosivity is defined as the potential of rain to cause erosion and it can be evaluated by rainfall kinetic power, which is determined by DSD and raindrop terminal velocity. This paper firstly deals with the raindrop terminal velocity estimate. Then the most widely used DSD are reviewed highlighting the difference between the raindrop size distribution per unit volume of air and that per unit area and time. The reliability of the available kinetic power-rainfall intensity relationships and their application …

010504 meteorology & atmospheric sciencesTerminal velocityRaindrop size distribution0207 environmental engineering02 engineering and technologyRainfall erosivitySeasonalitySeasonalityKinetic energyAtmospheric sciencesmedicine.disease01 natural sciencesRainfall kinetic powerDisdrometerDistribution (mathematics)ErosionmedicineEnvironmental scienceSettore AGR/08 - Idraulica Agraria E Sistemazioni Idraulico-ForestaliPrecipitationRainfall intensity020701 environmental engineeringIntensity (heat transfer)0105 earth and related environmental sciencesWater Science and Technology
researchProduct

Preface to theHydrological processes in urban environments: Updates on urbanization, naturalization and climate changeSpecial Issue

2018

010504 meteorology & atmospheric sciencesUrbanization0208 environmental biotechnologyEnvironmental scienceClimate change02 engineering and technologyNaturalization01 natural sciencesEnvironmental planning020801 environmental engineering0105 earth and related environmental sciencesWater Science and TechnologyHydrological Processes
researchProduct

Analysis of drought and vulnerability in the North Darfur region of Sudan

2018

North Darfur of Sudan is located on the edge of the Sahara Desert and endures frequent droughts due to water shortages and high summer temperatures. Monitoring and understanding drought characteristics are essential for integrated drought risk mitigation and prevetion of land degradation. This study evaluates drought conditions in North Darfur by analyzing the spatiotemporal distribution of drought using three drought indices (Standardized Precipitation Index, Vegetation Condition Index, and Soil Moisture Content Index) and their combined drought index (CDI) from 2004 to 2013. Biophysical and socioeconomic indicators are further used to measure vulnerability to drought risk and its three co…

010504 meteorology & atmospheric sciencesVulnerability index0208 environmental biotechnologyVulnerabilitySoil Sciencedrought02 engineering and technologyDevelopmentMonsoon01 natural sciencesremote sensingCondition indexparasitic diseasesEnvironmental Chemistrymeteorology0105 earth and related environmental sciencesGeneral Environmental ScienceAdaptive capacityfungifood and beveragesVegetationBodemfysica en LandbeheerPE&RC020801 environmental engineeringSoil Physics and Land ManagementGeographyvulnerability indexLand degradationNorth Darfur regionRisk assessmentWater resource managementLand Degradation & Development
researchProduct

Global Groundwater-Vegetation Relations

2017

Groundwater is an integral component of the water cycle, and it also influences the carbon cycle by supplying moisture to ecosystems. However, the extent and determinants of groundwater-vegetation interactions are poorly understood at the global scale. Using several high-resolution data products, we show that the spatial patterns of ecosystem gross primary productivity and groundwater table depth are correlated during at least one season in more than two-thirds of the global vegetated area. Positive relationships, i.e., larger productivity under shallower groundwater table, predominate in moisture-limited dry to mesic conditions with herbaceous and shrub vegetation. Negative relationships, …

010504 meteorology & atmospheric sciencesWater table0208 environmental biotechnology02 engineering and technologyecohydrological patterns01 natural sciencesgroundwaterEcosystemWater cycleplant productivity0105 earth and related environmental sciencesHydrologyecosystemVegetation15. Life on land6. Clean water020801 environmental engineeringGeophysicsProductivity (ecology)13. Climate actionSpatial ecologyGeneral Earth and Planetary SciencesEnvironmental scienceGroundwaterWater usespatial covariation
researchProduct