Search results for "Enzyme Kinetics"

showing 10 items of 22 documents

2020

Electrophilic (het)arenes can undergo reactions with nucleophiles yielding π- or Meisenheimer (σ-) complexes or the products of the SNAr addition/elimination reactions. Such building blocks have only rarely been employed for the design of enzyme inhibitors. Herein, we demonstrate the combination of a peptidic recognition sequence with such electrophilic (het)arenes to generate highly active inhibitors of disease-relevant proteases. We further elucidate an unexpected mode of action for the trypanosomal protease rhodesain using NMR spectroscopy and mass spectrometry, enzyme kinetics and various types of simulations. After hydrolysis of an ester function in the recognition sequence of a weakly…

StereochemistryCarboxylic acidmedicine.medical_treatmentPharmaceutical Science010402 general chemistry01 natural sciencesAnalytical ChemistryNucleophileNucleophilic aromatic substitutionDrug DiscoverymedicineEnzyme kineticsPhysical and Theoretical Chemistrychemistry.chemical_classificationProteasebiology010405 organic chemistryOrganic ChemistryActive siteCysteine proteaseMeisenheimer complex0104 chemical scienceschemistryChemistry (miscellaneous)biology.proteinMolecular MedicineMolecules
researchProduct

The purification and properties of nucleoside phosphotransferase from mucosa of chicken intestine

1984

Abstract (1) Nucleoside phosphotransferase (nucleotide:3′-deoxynucleoside 5′-phosphotransferase, EC 2.7.1.77) has been purified from chicken intestine mucosa to apparent homogeneity. The enzyme is represented by a multisubunit protein at different degrees of association. It can dissociate into a compoenent with a marked fall in catalytic activity. (2) The associated forms are similar to the enzyme previously purified from chick embryo as regards: substrate specificity both with respect to nucleoside monophosphate donors and to deoxyribonucleoside acceptors; sigmoidicity in the rate curve with a variable phosphate donor; instability to heat, dilution and lowering of pH; the activating and pr…

StereochemistryCations DivalentProtein subunitBiophysicsBiologyBiochemistrychemistry.chemical_compoundStructural BiologySettore BIO/10 - BiochimicaNucleoside phosphotransferaseCentrifugation Density GradientAnimalsUreaNucleotideEnzyme kineticsIntestinal MucosaMolecular Biologychemistry.chemical_classificationNucleotidesPhosphotransferasesPhosphatenucleoside phosphotransferaseDeoxyuridineDeoxyribonucleosideMolecular WeightKineticsEnzymechemistryBiochemistryAlcoholsChromatography GelElectrophoresis Polyacrylamide GelChickens
researchProduct

Inactivation and Regeneration Kinetics of Horseradish Peroxidase Heated at High Temperatures.

1997

The inactivation kinetics of horseradish peroxidase (HRP) heated in capillary tubes in the range 110 to 135°C was studied. Its regeneration kinetics when stored at 4 and 25°C was also considered. As the severity of the treatment increased, the absolute value of the regeneration decreased. The storage temperature of the enzyme did not affect the percentage of maximum activity regenerable, although when this temperature was raised from 4 to 25°C the speed of regeneration increased. Kinetics of HRP inactivation determined after heating and after regeneration were compared. Both forms of the enzyme showed similar behavior with first-order inactivation kinetics, with Ea = 19.5 ± 1.0 kcal/mol and…

chemistry.chemical_classificationChromatographybiologyBlanchingRegeneration (biology)KineticsMicrobiologyHorseradish peroxidaseEnzymechemistryMolebiology.proteinEnzyme kineticsFood SciencePeroxidaseJournal of food protection
researchProduct

Thermal inactivation at high temperatures and regeneration of green asparagus peroxidase

2019

A spectrophotometric method was developed for determining the peroxidase activity of green asparagus in small samples. The optimum conditions for the analysis in the cuvette were 45 mM of H2O2 36 mM of guaiacol, and pH 7. The method can be used to determine enzyme activity at up to two decimal reductions. A study was performed of the regeneration and inactivation kinetics of the enzyme when heated between 90 and 125°C. Regenerated asparagus peroxidase reached its maximum activity after being stored 6 days at 25°C. The regenerated enzyme followed first-order inactivation kinetics, showing an Ea = 13.62 kcal/mol and k100°C = 2.07 min-1.

chemistry.chemical_classificationChromatographybiologyChemistryKineticsfood and beveragesbiology.organism_classificationMicrobiologyEnzyme assayCuvettechemistry.chemical_compoundEnzymeBiochemistrybiology.proteinAsparagusGuaiacolEnzyme kineticsFood SciencePeroxidase
researchProduct

Relationships between kinetic constants and the amino acid composition of enzymes from the yeast Saccharomyces cerevisiae glycolysis pathway

2012

The kinetic models of metabolic pathways represent a system of biochemical reactions in terms of metabolic fluxes and enzyme kinetics. Therefore, the apparent differences of metabolic fluxes might reflect distinctive kinetic characteristics, as well as sequence-dependent properties of the employed enzymes. This study aims to examine possible linkages between kinetic constants and the amino acid (AA) composition (AAC) for enzymes from the yeast Saccharomyces cerevisiae glycolytic pathway. The values of Michaelis-Menten constant (K M), turnover number (k cat), and specificity constant (k sp = k cat/K M) were taken from BRENDA (15, 17, and 16 values, respectively) and protein sequences of nine…

chemistry.chemical_classificationSpecificity constantbiologyResearchSaccharomyces cerevisiaeMichaelis-Menten constantTurnover numberbiology.organism_classificationMichaelis–Menten kineticsGeneral Biochemistry Genetics and Molecular BiologyYeastComputer Science ApplicationsAmino acidSequence-dependent propertiesComputational MathematicsMetabolic pathwayEnzymechemistryBiochemistryGlycolytic enzymesMultivariate relationshipsEnzyme kineticsSpecificity constantEURASIP Journal on Bioinformatics and Systems Biology
researchProduct

CeO2−x nanorods with intrinsic urease-like activity

2018

The large-scale production and ecotoxicity of urea make its removal from wastewater a health and environmental challenge. Whereas the industrial removal of urea relies on hydrolysis at elevated temperatures and high pressure, nature solves the urea disposal problem with the enzyme urease under ambient conditions. We show that CeO2−x nanorods (NRs) act as the first and efficient green urease mimic that catalyzes the hydrolysis of urea under ambient conditions with an activity (kcat = 9.58 × 101 s−1) about one order of magnitude lower than that of the native jack bean urease. The surface properties of CeO2−x NRs were probed by varying the Ce4+/Ce3+ ratio through La doping. Although La substit…

chemistry.chemical_classificationUreasebiologyChemistrySynthetic membrane02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciences0104 chemical sciencesCatalysisHydrolysischemistry.chemical_compoundEnzymeWastewaterbiology.proteinUreaGeneral Materials ScienceEnzyme kinetics0210 nano-technologyNuclear chemistryNanoscale
researchProduct

Differential behaviour of Pseudomonas sp. 42A2 LipC, a lipase showing greater versatility than its counterpart LipA

2009

Abstract Growth of Pseudomonas sp. 42A2 on oleic acid releases polymerized hydroxy-fatty acids as a result of several enzymatic conversions that could involve one or more lipases. To test this hypothesis, the lipolytic system of strain Pseudomonas sp. 42A2 was analyzed, revealing the presence of at least an intracellular carboxylesterase and a secreted lipase. Consensus primers derived from a conserved region of bacterial lipase subfamilies I.1 and I.2 allowed isolation of two secreted lipase genes, lipA and lipC, highly homologous to those of Pseudomonas aeruginosa PAO1. Homologous cloning of the isolated lipA and lipC genes was performed in Pseudomonas sp. 42A2 for LipA and LipC over-expr…

chemistry.chemical_classificationbiologyStrain (chemistry)PseudomonasFatty acidLipaseGeneral Medicinebiology.organism_classificationBiochemistrySubstrate SpecificityIsoenzymesCarboxylesteraseOleic acidchemistry.chemical_compoundEnzymeBacterial ProteinschemistryBiochemistryPseudomonasEnzyme Stabilitybiology.proteinEnzyme kineticsLipaseBiochimie
researchProduct

Calcium efflux from human erythrocyte ghosts

1970

The passive Ca efflux from human red cell ghosts was studied in media of differing ion compositions and compared to the ATP-dependent Ca efflux. Cells were loaded with(45)Ca during reversible hemolysis, and the loss of radioactivity into the non-radioactive incubation medium was measured, usually for 3 hr at 37°C. Analysis of the efflux curves revealed that(45)Ca efflux followed the kinetics of a simple two-compartment system. In the concentration range between 0 and 1MM Ca in the external solution ([Ca(++)] o ), the rate constant of passive Ca efflux (k min(-1), fraction of(45)Ca lost per minute into the medium) increased from 0.00732 to 0.0150 min(-1). There was no further increase at hig…

education.field_of_studyChromatographyPhysiologyChemistryDiffusionKineticsPopulationBiophysicsCell BiologyMersalylchemistry.chemical_compoundReaction rate constantBiophysicsEnzyme kineticsEffluxeducationIncubationThe Journal of Membrane Biology
researchProduct

Molecular docking and oxidation kinetics of 3-phenyl coumarin derivatives by human CYP2A13

2021

CYP2A13 enzyme is expressed in human extrahepatic tissues, while CYP2A6 is a hepatic enzyme. Reactions catalysed by CYP2A13 activate tobacco-specific nitrosamines and some other toxic xenobiotics in lungs.To compare oxidation characteristics and substrate-enzyme active site interactions in CYP2A13 vs CYP2A6, we evaluated CYP2A13 mediated oxidation characteristics of 23 coumarin derivatives and modelled their interactions at the enzyme active site.CYP2A13 did not oxidise six coumarin derivatives to corresponding fluorescent 7-hydroxycoumarins. The Km-values of the other coumarins varied 0.85���97 ��M, Vmax-values of the oxidation reaction varied 0.25���60 min���1, and intrinsic clearance var…

entsyymitCYP2A13biokemiaoxidationenzyme kineticsmolekyylidynamiikkaheterocyclic compoundsin silico -menetelmä3-phenyl coumarinhapetus-pelkistysreaktiokumariinitin silico modeling
researchProduct

In vitro glucuronidation of 7-hydroxycoumarin derivatives in intestine and liver microsomes of Beagle dogs

2019

Beagle dog is a standard animal model for evaluating nonclinical pharmacokinetics of new drug candidates. Glucuronidation in intestine and liver is an important first-pass drug metabolic pathway, especially for phenolic compounds. This study evaluated the glucuronidation characteristics of several 7-hydroxycoumarin derivatives in beagle dog's intestine and liver in vitro. To this end, glucuronidation rates of 7-hydroxycoumarin (compound 1), 7-hydroxy-4-trifluoromethylcoumarin (2), 6-methoxy-7-hydroxycoumarin (3), 7-hydroxy-3-(4-tolyl)coumarin (4), 3-(4-fluorophenyl)coumarin (5), 7-hydroxy-3-(4-hydroxyphenyl)coumarin (6), 7-hydroxy-3-(4-methoxyphenyl)coumarin (7), and 7-hydroxy-3-(1H-1,2,4-t…

entsyymitColonGlucuronidationPharmaceutical Science02 engineering and technologyliver030226 pharmacology & pharmacyBeaglekoira7-hydroxycoumarin derivative03 medical and health scienceschemistry.chemical_compound0302 clinical medicineDogsGlucuronidesPharmacokineticsMicrosomesenzyme kineticsIntestine SmallmedicineAnimalsHumansUmbelliferonesGlucuronosyltransferasekumariinitaineenvaihduntachemistry.chemical_classificationChemistryglucuronidationdog intestinemaksaMetabolismlääkeaineet021001 nanoscience & nanotechnologyCoumarinSmall intestineEnzymemedicine.anatomical_structureBiochemistryLiverfarmakokinetiikkasuolistoMicrosomekoe-eläinmallit0210 nano-technology
researchProduct