Search results for "Epithelial-mesenchymal transition"

showing 5 items of 65 documents

The mitotic kinase Aurora-A promotes distant metastases by inducing epithelial-to-mesenchymal transition in ERα+ breast cancer cells

2013

In this study, we demonstrate that constitutive activation of Raf-1 oncogenic signaling induces stabilization and accumulation of Aurora-A mitotic kinase that ultimately drives the transition from an epithelial to a highly invasive mesenchymal phenotype in estrogen receptor α-positive (ERα(+)) breast cancer cells. The transition from an epithelial- to a mesenchymal-like phenotype was characterized by reduced expression of ERα, HER-2/Neu overexpression and loss of CD24 surface receptor (CD24(-/low)). Importantly, expression of key epithelial-to-mesenchymal transition (EMT) markers and upregulation of the stemness gene SOX2 was linked to acquisition of stem cell-like properties such as the ab…

Smad5 ProteinCancer ResearchEpithelial-Mesenchymal TransitionMAP Kinase Signaling SystemReceptor ErbB-2Active Transport Cell NucleusEstrogen receptorMice NudeBreast NeoplasmsBiologyArticleMicebreast cancerSOX2Cell MovementCell Line TumorGeneticsAnimalsHumansEpithelial–mesenchymal transitionKinase activityNeoplasm MetastasisPhosphorylationRNA Small InterferingMolecular BiologyAurora Kinase Ametastases mitosisSOXB1 Transcription FactorsEstrogen Receptor alphaCD24 AntigenXenograft Model Antitumor AssaysstemneGene Expression Regulation NeoplasticProto-Oncogene Proteins c-rafSettore BIO/18 - GeneticaTumor progressionembryonic structuresCancer researchMCF-7 CellsNeoplastic Stem CellsProto-Oncogene Proteins c-rafFemaleRNA InterferenceSignal transductionEstrogen receptor alphaNeoplasm Transplantation
researchProduct

Let-7d miRNA Shows Both Antioncogenic and Oncogenic Functions in Osteosarcoma-Derived 3AB-OS Cancer Stem Cells

2015

Osteosarcoma (OS), an aggressive highly invasive and metastatic bone-malignancy, shows therapy resistance and recurrence, two features that likely depend on cancer stem cells (CSCs), which hold both self-renewing and malignant potential. So, effective anticancer therapies against OS should specifically target and destroy CSCs. We previously found that the let-7d microRNA was downregulated in the 3AB-OS-CSCs, derived from the human OS-MG63 cells. Here, we aimed to assess whether let-7d modulation affected tumorigenic and stemness properties of these OS-CSCs. We found that let-7d-overexpression reduced cell proliferation by decreasing CCND2 and E2F2 cell-cycle-activators and increasing p21 an…

Time FactorsEpithelial-Mesenchymal TransitionTime FactorTranscription FactorPhysiologyClinical BiochemistryDrug ResistanceAntineoplastic AgentsApoptosisBone NeoplasmsCell Cycle ProteinsBone NeoplasmTransfectionCell LineAntineoplastic AgentCell MovementCell Line TumorCell Cycle ProteinHumansNeoplasm InvasivenessCell Self RenewalAntineoplastic Agents; Apoptosis; Apoptosis Regulatory Proteins; Bone Neoplasms; Cell Cycle; Cell Cycle Proteins; Cell Line Tumor; Cell Movement; Cell Self Renewal; Drug Resistance Neoplasm; Epithelial-Mesenchymal Transition; Gene Expression Regulation Neoplastic; Humans; MicroRNAs; Neoplasm Invasiveness; Neoplastic Stem Cells; Osteosarcoma; Phenotype; Signal Transduction; Time Factors; Transcription Factors; Transfection; Physiology; Medicine (all); Clinical Biochemistry; Cell BiologyNeoplasm InvasiveneNeoplasticOsteosarcomaTumorApoptosis Regulatory ProteinMedicine (all)Cell CycleApoptosiMicroRNACell BiologyGene Expression Regulation NeoplasticMicroRNAsPhenotypeGene Expression RegulationDrug Resistance NeoplasmNeoplastic Stem CellsNeoplasmNeoplastic Stem CellApoptosis Regulatory ProteinsTranscription FactorsHumanSignal Transduction
researchProduct

An epistatic mini-circuitry between the transcription factors Snail and HNF4α controls liver stem cell and hepatocyte features exhorting opposite reg…

2011

Preservation of the epithelial state involves the stable repression of epithelial-to-mesenchymal transition program, whereas maintenance of the stem compartment requires the inhibition of differentiation processes. A simple and direct molecular mini-circuitry between master elements of these biological processes might provide the best device to keep balanced such complex phenomena. In this work, we show that in hepatic stem cell Snail, a transcriptional repressor of the hepatocyte differentiation master gene HNF4α, directly represses the expression of the epithelial microRNAs (miRs)-200c and-34a, which in turn target several stem cell genes. Notably, in differentiated hepatocytes HNF4α, p…

Transcription GeneticTranscription FactorCellular differentiationLiver Stem CellSnailMESH: Mice KnockoutMESH: HepatocytesMice0302 clinical medicineSnail; hnf4a; mir-200; mir-34a; stemness; hepatocyte differentiationHepatocyteMESH: AnimalsMice KnockoutHepatocyte differentiationmir-34a0303 health sciencesStemneStem CellsMicroRNACell DifferentiationMESH: Transcription FactorsCell biologySnailmir-200Hepatocyte Nuclear Factor 4Liver030220 oncology & carcinogenesisMiRs-200MESH: Hepatocyte Nuclear Factor 4Hepatocyte differentiation; HNF4a; MiR-34a; MiRs-200; Snail; Stemness; Animals; Cell Differentiation; Epithelial-Mesenchymal Transition; Hepatocyte Nuclear Factor 4; Hepatocytes; Liver; Mice; Mice Knockout; MicroRNAs; Snail Family Transcription Factors; Stem Cells; Transcription Factors; Transcription Genetic; Cell Biology; Molecular BiologyStem cellhnf4aMESH: Cell Differentiationhepatocyte differentiationEpithelial-Mesenchymal TransitionMESH: Stem Cells[SDV.BC]Life Sciences [q-bio]/Cellular BiologyBiologystemness03 medical and health sciencesStem Cellbiology.animalAnimals[SDV.BBM]Life Sciences [q-bio]/Biochemistry Molecular BiologyEpithelial–mesenchymal transitionMESH: MiceMolecular BiologyTranscription factor030304 developmental biologyOriginal PaperAnimalMESH: Transcription GeneticSnail Family Transcription FactorCell BiologyMolecular biologyMicroRNAsMESH: Epithelial-Mesenchymal TransitionHepatocyte nuclear factor 4HepatocytesSnail Family Transcription FactorsMESH: MicroRNAsMESH: LiverTranscription FactorsCell Death & Differentiation
researchProduct

Role of the small heat shock protein alphaB-crystallin in pulmonary fibrosis and its implication in the signaling pathway of the Transforming Growth …

2013

Idiopathic pulmonary fibrosis (IPF) has no effective current treatment. It is characterized by a sub-pleural onset and the presence of myofibroblasts, responsible for the excessive extracellular matrix synthesis. Transforming Growth Factor (TGF)-β1 is considered as the major profibrotic cytokine. Its signaling pathway occurs through the Smads proteins, including Smad4. TGF-β1 allows the differentiation of lung fibroblasts and epithelial and mesothelial cells into myofibroblasts. AB-crystallin is a small heat shock protein overexpressed in liver, renal and vascular fibrosis and can be induced by TGF-β1. In this study, we assessed the role of αB-crystallin in pleural and pulmonary fibrosis. W…

[SDV.SA]Life Sciences [q-bio]/Agricultural sciences[SDV.SA] Life Sciences [q-bio]/Agricultural sciences[SDV.MHEP] Life Sciences [q-bio]/Human health and pathologyTransition épithélio-mésenchymateuseIdiopathic pulmonary fibrosisFibrose pleuraleTransforming Growth Factor-β1ΑB-crystallinFibrose pulmonaire idiopathiqueEpithelial-Mesenchymal transition[ SDV.MHEP ] Life Sciences [q-bio]/Human health and pathologyPleurasense organs[ SDV.SA ] Life Sciences [q-bio]/Agricultural sciences[SDV.MHEP]Life Sciences [q-bio]/Human health and pathologyPleural fibrosisPlèvre
researchProduct

Inhibition of HSP27 blocks fibrosis development and EMT features by promoting Snail degradation

2013

Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by myofibroblast proliferation. Transition of epithelial/mesothelial cells into myofibroblasts [epithelial-to-mesenchymal transition (EMT)] occurs under the influence of transforming growth factor (TGF)-β1, with Snail being a major transcription factor. We study here the role of the heat-shock protein HSP27 in fibrogenesis and EMT. In vitro, we have up- and down-modulated HSP27 expression in mesothelial and epithelial cell lines and studied the expression of different EMT markers induced by TGF-β1. In vivo, we inhibited HSP27 with the antisense oligonucleotide OGX-427 (in phase II clinical trials as anticancer agent)…

endocrine systemPathologymedicine.medical_specialtyEpithelial-Mesenchymal Transitionanimal structuresSnailsHSP27 Heat-Shock ProteinsBiologyBiochemistryCell LineRats Sprague-DawleyTransforming Growth Factor beta103 medical and health sciencesIdiopathic pulmonary fibrosis0302 clinical medicineIn vivoFibrosisPulmonary fibrosisGeneticsmedicineAnimalsHumansEpithelial–mesenchymal transitionMolecular Biology030304 developmental biology0303 health sciencesGene knockdownEpithelial CellsOligonucleotides AntisenseThionucleotidesCadherinsmedicine.diseaseFibrosisRats3. Good health030220 oncology & carcinogenesisembryonic structuresCancer researchMyofibroblastTranscription FactorsBiotechnologyTransforming growth factorThe FASEB Journal
researchProduct