Search results for "Equations Of Motion"

showing 10 items of 143 documents

Lorentz harmonics and superfield action. D=10, N=1 superstring

2000

We propose a new version of the superfield action for a closed D=10, N=1 superstring where the Lorentz harmonics are used as auxiliary superfields. The incorporation of Lorentz harmonics into the superfield action makes possible to obtain superfield constraints of the induced worldsheet supergravity as equations of motion. Moreover, it becomes evident that a so-called 'Wess-Zumino part' of the superfield action is basically a Lagrangian form of the generalized action principle. We propose to use the second Noether theorem to handle the essential terms in the transformation lows of hidden gauge symmetries, which remove dynamical degrees of freedom from the Lagrange multiplier superfield.

High Energy Physics - TheoryPhysicsPhysics and Astronomy (miscellaneous)WorldsheetLorentz transformationSupergravityHigh Energy Physics::PhenomenologySuperstring theoryEquations of motionFOS: Physical sciencesSuperspaceAction (physics)symbols.namesakeHigh Energy Physics::TheoryNonlinear Sciences::Exactly Solvable and Integrable SystemsHigh Energy Physics - Theory (hep-th)symbolsNoether's theoremMathematical physics
researchProduct

General invertible transformation and physical degrees of freedom

2017

An invertible field transformation is such that the old field variables correspond one-to-one to the new variables. As such, one may think that two systems that are related by an invertible transformation are physically equivalent. However, if the transformation depends on field derivatives, the equivalence between the two systems is nontrivial due to the appearance of higher derivative terms in the equations of motion. To address this problem, we prove the following theorem on the relation between an invertible transformation and Euler-Lagrange equations: If the field transformation is invertible, then any solution of the original set of Euler-Lagrange equations is mapped to a solution of …

High Energy Physics - TheoryPhysicsPure mathematicsCosmology and Nongalactic Astrophysics (astro-ph.CO)010308 nuclear & particles physicsEquations of motionMaterial derivativeClassical Physics (physics.class-ph)FOS: Physical sciencesPhysics - Classical PhysicsGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum CosmologyTensor fieldlaw.inventionField transformationInvertible matrixHigh Energy Physics - Theory (hep-th)law0103 physical sciencesEquivalence (formal languages)010306 general physicsField equationScalar fieldAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Generalized Slow Roll in the Unified Effective Field Theory of Inflation

2017

We provide a compact and unified treatment of power spectrum observables for the effective field theory (EFT) of inflation with the complete set of operators that lead to second-order equations of motion in metric perturbations in both space and time derivatives, including Horndeski and GLPV theories. We relate the EFT operators in ADM form to the four additional free functions of time in the scalar and tensor equations. Using the generalized slow roll formalism, we show that each power spectrum can be described by an integral over a single source that is a function of its respective sound horizon. With this correspondence, existing model independent constraints on the source function can b…

High Energy Physics - TheoryPhysicsSource functionCosmology and Nongalactic Astrophysics (astro-ph.CO)Slow rollSpacetime010308 nuclear & particles physicsScalar (mathematics)Spectral densityEquations of motionFOS: Physical sciencesObservableGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum CosmologyTheoretical physicsClassical mechanicsHigh Energy Physics - Theory (hep-th)0103 physical sciencesEffective field theory010306 general physicsAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Large eddy simulation of inertial particles dispersion in a turbulent gas-particle channel flow bounded by rough walls

2020

The purpose of this paper is to understand the capability and consistency of large eddy simulation (LES) in Eulerian–Lagrangian studies aimed at predicting inertial particle dispersion in turbulent wall-bounded flows, in the absence of ad hoc closure models in the Lagrangian equations of particle motion. The degree of improvement granted by LES models is object of debate, in terms of both accurate prediction of particle accumulation and local particle segregation; therefore, we assessed the accuracy in the prediction of the particle velocity statistics by comparison against direct numerical simulation (DNS) of a finer computational mesh, under both one-way and two-way coupling regimes. We p…

Lagrange multipliersLagrangian equationsParticle statisticsParticle statisticsVelocity controlComputational MechanicsDirect numerical simulationWall flow Accurate prediction02 engineering and technology01 natural sciencesReynolds numberSettore ICAR/01 - Idraulica010305 fluids & plasmasPhysics::Fluid Dynamicssymbols.namesake0203 mechanical engineeringEquations of motion0103 physical sciencesParticle velocityDispersionsPhysicsTurbulence modificationTurbulenceMechanical EngineeringLarge eddy simulationTwo phase flowReynolds numberMechanicsTurbulent wall-bounded flows Segregation (metallography)Open-channel flow020303 mechanical engineering & transportsParticle accumulationQuay wallssymbolsParticle segregationParticleForecastingParticle velocitiesLarge eddy simulationActa Mechanica
researchProduct

Stabilization of a Class of Stochastic Nonlinear Systems

2013

This paper addresses two control schemes for stochastic nonlinear systems. Firstly, an adaptive controller is designed for a class of motion equations. Then, a robust finite-time control scheme is proposed to stabilize a class of nonlinear stochastic systems. The stability of the closed-loop systems is established based on stochastic Lyapunov stability theorems. Links between these two methods are given. The efficiency of the control schemes is evaluated using numerical simulations.

Lyapunov stabilityScheme (programming language)Class (set theory)Article SubjectGeneral Mathematicslcsh:MathematicsGeneral EngineeringStability (learning theory)MathematicsofComputing_NUMERICALANALYSISEquations of motionlcsh:QA1-939Nonlinear systemControl theorylcsh:TA1-2040lcsh:Engineering (General). Civil engineering (General)computerMathematicscomputer.programming_languageMathematical Problems in Engineering
researchProduct

On the dynamics of non-local fractional viscoelastic beams under stochastic agencies

2018

Abstract Non-local viscoelasticity is a subject of great interest in the context of non-local theories. In a recent study, the authors have proposed a non-local fractional beam model where non-local effects are represented as viscoelastic long-range volume forces and moments, exchanged by non-adjacent beam segments depending on their relative motion, while local effects are modelled by elastic classical stress resultants. Long-range interactions have been given a fractional constitutive law, involving the Caputo's fractional derivative. This paper introduces a comprehensive numerical approach to calculate the stochastic response of the non-local fractional beam model under Gaussian white no…

Materials scienceDiscretization02 engineering and technologyWhite noiseIndustrial and Manufacturing Engineering0203 mechanical engineeringFractional viscoelasticityComposite materialImpulse responseNon local Timoshenko beamMechanical EngineeringMathematical analysisEquations of motionWhite noise021001 nanoscience & nanotechnologyPhysics::History of PhysicsNon local Timoshenko beam; Fractional viscoelasticity; White noise; State variable expansionFractional calculusNumerical integration020303 mechanical engineering & transportsMechanics of MaterialsStress resultantsFrequency domainCeramics and CompositesState variable expansionSettore ICAR/08 - Scienza Delle CostruzioniFractional viscoelasticity Non local Timoshenko beam State variable expansion White noise0210 nano-technologyNon local Timoshenko beam Fractional viscoelasticity White noise State variable expansionComposites Part B: Engineering
researchProduct

A Novel Mathematical Model For TLCD: Theoretical And Experimental Investigations

2014

In this paper, a novel mathematical model for the Tuned Liquid Column Damper (TLCD) is presented. Taking advantages of fractional derivatives and related concepts, a new equation of motion of the liquid inside the TLCD is obtained. Experimental laboratory tests have been performed in order to validate the proposed linear fractional formulation. Comparison among experimental results, numerical obtained using the classical formulation and numerical with the new linear fractional formulation are reported. Results in frequency domain show how the new linear fractional formulation can predict the real behavior of such a passive vibration control system, more correctly than the classical mathemat…

Mathematical optimizationExperimentalanalysisFrequency domainVibration controlEquations of motionApplied mathematicsFractional derivativeExperimental laboratoryLiquid columnTLCDDamperMathematicsFractional calculus
researchProduct

Resistive dissipative magnetohydrodynamics from the Boltzmann-Vlasov equation

2019

We derive the equations of motion of relativistic, resistive, second-order dissipative magnetohydrodynamics from the Boltzmann-Vlasov equation using the method of moments. We thus extend our previous work [Phys. Rev. D 98, 076009 (2018)], where we only considered the non-resistive limit, to the case of finite electric conductivity. This requires keeping terms proportional to the electric field $E^\mu$ in the equations of motions and leads to new transport coefficients due to the coupling of the electric field to dissipative quantities. We also show that the Navier-Stokes limit of the charge-diffusion current corresponds to Ohm's law, while the coefficients of electrical conductivity and cha…

Nuclear TheoryFOS: Physical sciencesfluid dynamicsplasmafysiikka01 natural sciences114 Physical sciencesNuclear Theory (nucl-th)High Energy Physics - Phenomenology (hep-ph)Electric field0103 physical sciencesTHERMODYNAMICS010306 general physicsPhysicsta114010308 nuclear & particles physicsplasma physicsVlasov equationFluid Dynamics (physics.flu-dyn)Equations of motionCharge (physics)Physics - Fluid DynamicsDissipationBoltzmann equationPhysics - Plasma PhysicsPlasma Physics (physics.plasm-ph)High Energy Physics - PhenomenologyQuantum electrodynamicsDissipative systemMagnetohydrodynamicsmagnetohydrodynamics
researchProduct

Nonresistive dissipative magnetohydrodynamics from the Boltzmann equation in the 14-moment approximation

2018

We derive the equations of motion of relativistic, non-resistive, second-order dissipative magnetohydrodynamics from the Boltzmann equation using the method of moments. We assume the fluid to be composed of a single type of point-like particles with vanishing dipole moment or spin, so that the fluid has vanishing magnetization and polarization. In a first approximation, we assume the fluid to be non-resistive, which allows to express the electric field in terms of the magnetic field. We derive equations of motion for the irreducible moments of the deviation of the single-particle distribution function from local thermodynamical equilibrium. We analyze the Navier-Stokes limit of these equati…

Nuclear TheoryTRANSIENT RELATIVISTIC THERMODYNAMICSFOS: Physical scienceshiukkasfysiikkaHEAVY-ION COLLISIONSmagneettikentätSystem of linear equations114 Physical sciences01 natural sciencesMAGNETIC-FIELDSBoltzmann equationNuclear Theory (nucl-th)HYDRODYNAMICSHigh Energy Physics - Phenomenology (hep-ph)FLUIDS0103 physical sciences010306 general physicsKINETIC-THEORYnestefysiikkaPhysicsta114010308 nuclear & particles physicsFluid Dynamics (physics.flu-dyn)Equations of motionPhysics - Fluid DynamicsBoltzmann equationMagnetic fieldnonresistivenessHigh Energy Physics - PhenomenologyDipoleDistribution functionClassical mechanicsDissipative systemMagnetohydrodynamicsmagnetohydrodynamicsPhysical Review D
researchProduct

Electrophoretic properties of charged colloidal suspensions: Application of a hybrid MD/LB method

2006

Abstract Electrophoretic properties of charged colloidal suspensions are investigated using a hybrid simulation method. In this method, the colloidal particles are propagated via Newton’s equations of motion using molecular dynamics (MD), while they are coupled to a structureless solvent that is modelled by the Lattice-Boltzmann (LB) method.

Numerical AnalysisMaterials scienceGeneral Computer ScienceApplied Mathematicsdigestive oral and skin physiologyEquations of motionTheoretical Computer ScienceCondensed Matter::Soft Condensed MatterSolventElectrophoresisMolecular dynamicsColloidClassical mechanicsChemical physicsColloidal particleModeling and SimulationMathematics and Computers in Simulation
researchProduct