Search results for "Escher"

showing 10 items of 728 documents

High-Pressure-Driven Reversible Dissociation of α-Synuclein Fibrils Reveals Structural Hierarchy

2017

The analysis of the α-synuclein (aS) aggregation process, which is involved in Parkinson's disease etiopathogenesis, and of the structural feature of the resulting amyloid fibrils may shed light on the relationship between the structure of aS aggregates and their toxicity. This may be considered a paradigm of the ground work needed to tackle the molecular basis of all the protein-aggregation-related diseases. With this aim, we used chemical and physical dissociation methods to explore the structural organization of wild-type aS fibrils. High pressure (in the kbar range) and alkaline pH were used to disassemble fibrils to collect information on the hierarchic pathway by which distinct β-sh…

0301 basic medicineModels MolecularCircular dichroismAmyloidProtein FoldingProtein domainBeta sheetBiophysicsFibrilMicroscopy Atomic ForceSpectrum Analysis RamanDissociation (chemistry)03 medical and health sciences0302 clinical medicineProtein structureMicroscopy Electron TransmissionProtein DomainsSpectroscopy Fourier Transform InfraredEscherichia coliPressureChemistryCircular DichroismEnergy landscapeProteinsalpha synuclein amyloid recombinant proteinHydrogen-Ion ConcentrationRecombinant ProteinsCrystallography030104 developmental biologyMutationalpha-SynucleinProtein foldingProtein Conformation beta-StrandProtein Multimerization030217 neurology & neurosurgery
researchProduct

Two differential binding mechanisms of FG-nucleoporins and nuclear transport receptors

2018

Summary Phenylalanine-glycine-rich nucleoporins (FG-Nups) are intrinsically disordered proteins, constituting the selective barrier of the nuclear pore complex (NPC). Previous studies showed that nuclear transport receptors (NTRs) were found to interact with FG-Nups by forming an “archetypal-fuzzy” complex through the rapid formation and breakage of interactions with many individual FG motifs. Here, we use single-molecule studies combined with atomistic simulations to show that, in sharp contrast, FG-Nup214 undergoes a coupled reconfiguration-binding mechanism when interacting with the export receptor CRM1. Association and dissociation rate constants are more than an order of magnitude lowe…

0301 basic medicineModels MolecularGlycosylationglycosylationProtein ConformationPhenylalanineGlycineSequence (biology)Intrinsically disordered proteinsnuclear transport receptorssingle-molecule FRETGeneral Biochemistry Genetics and Molecular BiologyArticle03 medical and health scienceschemistry.chemical_compound0302 clinical medicineEscherichia coliFluorescence Resonance Energy TransferHumansNuclear poreReceptorlcsh:QH301-705.5Single-molecule FRETmolecular dynamics simulationsbinding mechanismintrinsically disordered proteinFG-Nup3. Good healthNuclear Pore Complex Proteins030104 developmental biologychemistrylcsh:Biology (General)BiophysicsNuclear PoreNucleoporinNuclear transport030217 neurology & neurosurgeryProtein BindingCell Reports
researchProduct

rbFOX1/MBNL1 competition for CCUG RNA repeats binding contributes to myotonic dystrophy type 1/type 2 differences

2018

Myotonic dystrophy type 1 and type 2 (DM1, DM2) are caused by expansions of CTG and CCTG repeats, respectively. RNAs containing expanded CUG or CCUG repeats interfere with the metabolism of other RNAs through titration of the Muscleblind-like (MBNL) RNA binding proteins. DM2 follows a more favorable clinical course than DM1, suggesting that specific modifiers may modulate DM severity. Here, we report that the rbFOX1 RNA binding protein binds to expanded CCUG RNA repeats, but not to expanded CUG RNA repeats. Interestingly, rbFOX1 competes with MBNL1 for binding to CCUG expanded repeats and overexpression of rbFOX1 partly releases MBNL1 from sequestration within CCUG RNA foci in DM2 muscle ce…

0301 basic medicineModels MolecularProtein Conformation alpha-Helical[SDV]Life Sciences [q-bio]General Physics and AstronomyGene ExpressionRNA-binding proteinCrystallography X-Raychemistry.chemical_compoundMOLECULAR-BASISGene expressionMBNL1Myotonic DystrophyComputingMilieux_MISCELLANEOUSMultidisciplinaryCHLORIDE CHANNELQRNA-Binding ProteinsRecombinant Proteins3. Good healthCell biologyCONGENITAL HEART-DISEASEDrosophila melanogasterThermodynamicsSKELETAL-MUSCLERNA Splicing FactorsCUG REPEATSProtein BindingRNA Splicing Factorsmusculoskeletal diseasesSTEADY-STATEcongenital hereditary and neonatal diseases and abnormalitiesScienceRBFOX1BiologyMyotonic dystrophyBinding CompetitiveGeneral Biochemistry Genetics and Molecular BiologyArticle03 medical and health sciencesmedicineEscherichia coliAnimalsHumansProtein Interaction Domains and MotifsBinding siteNucleotide MotifsMuscle SkeletalSPLICING REGULATOR RBFOX2MUSCLEBLIND PROTEINSBinding SitesPRE-MESSENGER-RNARNAGeneral Chemistrymedicine.diseaseDisease Models AnimalKinetics030104 developmental biologychemistryTRIPLET REPEATRNAProtein Conformation beta-Strand3111 Biomedicine
researchProduct

CitA (citrate) and DcuS (C4-dicarboxylate) sensor kinases in thermophilic Geobacillus kaustophilus and Geobacillus thermodenitrificans

2015

The thermophilic Geobacillus thermodenitrificans and Geobacillus kaustophilus are able to use citrate or C4-dicarboxylates like fumarate or succinate as the substrates for growth. The genomes of the sequenced Geobacillus strains (nine strains) each encoded a two-component system of the CitA family. The sensor kinase of G. thermodenitrificans (termed CitAGt) was able to replace CitA of Escherichia coli (CitAEc) in a heterologous complementation assay restoring expression of the CitAEc-dependent citC-lacZ reporter gene and anaerobic growth on citrate. Complementation was specific for citrate. The sensor kinase of G. kaustophilus (termed DcuSGk) was able to replace DcuSEc of E. coli. It respon…

0301 basic medicineMolecular Sequence Data030106 microbiologyHeterologousBacillus subtilismedicine.disease_causeMicrobiologyGeobacillusCitric Acid03 medical and health sciencesBacterial ProteinsProtein-fragment complementation assaymedicineDicarboxylic AcidsAmino Acid SequenceEscherichia colibiologyThermophileGeobacillusGene Expression Regulation Bacterialbiology.organism_classificationComplementationBiochemistryHeterologous expressionProtein KinasesSequence AlignmentMicrobiology
researchProduct

Genomic evolution of bacterial populations under coselection by antibiotics and phage

2017

Bacteria live in dynamic systems where selection pressures can alter rapidly, forcing adaptation to the prevailing conditions. In particular, bacteriophages and antibiotics of anthropogenic origin are major bacterial stressors in many environments. We previously observed that populations of the bacterium Pseudomonas fluorescens SBW25 exposed to the lytic bacteriophage SBW25Φ2 and a noninhibitive concentration of the antibiotic streptomycin (coselection) achieved higher levels of phage resistance compared to populations exposed to the phage alone. In addition, the phage became extinct under coselection while remaining present in the phage alone environment. Further, phenotypic tests indicate…

0301 basic medicineMutation rateantibiotic resistancemedicine.drug_class030106 microbiologyAntibioticsBiologyPseudomonas fluorescensmedicine.disease_causeMicrobiologyEvolution MolecularBacteriophage03 medical and health sciencesAntibiotic resistanceMutation RateDrug Resistance BacterialGeneticsmedicineBacteriophagesexperimental evolutionSelection GeneticEscherichia coliEcology Evolution Behavior and Systematics2. Zero hungerExperimental evolutionta1182biology.organism_classificationsublethal antibiotic concentrationsAnti-Bacterial AgentsPhenotypeLytic cyclephage resistanceStreptomycinta1181phage phi-2Genome BacterialBacteria
researchProduct

Multi-criteria framework as an innovative tradeoff approach to determine the shelf-life of high pressure-treated poultry

2016

International audience; A multi-criteria framework combining safety, hygiene and sensorial quality was developed to investigate the possibility of extending the shelf-life and/or removing lactate by applying High Hydrostatic Pressure (HHP) in a ready-to-cook (RTC) poultry product. For this purpose, Salmonella and Listeria monocytogenes were considered as safety indicators and Escherichia coli as hygienic indicator. Predictive modeling was used to determine the influence of HHP and lactate concentration on microbial growth and survival of these indicators. To that end, probabilistic assessment exposure models developed in a previous study (Lerasle, M., Guillou, S., Simonin, H., Anthoine, V.,…

0301 basic medicineOrganolepticHydrostatic pressureSodium lactateEscherichia-coliPoultrylLsteria-monocytogenesInactivationchemistry.chemical_compoundSalmonella[SDV.IDA]Life Sciences [q-bio]/Food engineeringFood scienceCookingPoultry ProductsPotassium lactateMathematics2. Zero hungerHigh hydrostatic-pressurePoultry product[ SDV.IDA ] Life Sciences [q-bio]/Food engineeringRisk-risk trade-off;Lactate;Food hygiene;Food safety;Sensorial qualitySensorial qualityRisk-risk trade-off04 agricultural and veterinary sciencesGeneral Medicine040401 food scienceMeat ProductsCured beef carpaccioTasteIn-ground beefMeat-products030106 microbiologyShelf lifeMicrobiologyFood safety03 medical and health sciences0404 agricultural biotechnologyChicken meatFood PreservationEscherichia coliHydrostatic PressureFood hygieneFood microbiologyAnimalsHumansExposure assessmentbusiness.industryDifferent temperaturesFood safetyListeria monocytogeneschemistryFood StorageConsumer Product SafetyLactatebusinessFood Science
researchProduct

Chemical Composition of Herbal Macerates and Corresponding Commercial Essential Oils and Their Effect on Bacteria Escherichia coli

2017

This study addresses the chemical composition of some commercial essential oils (clove, juniper, oregano, and marjoram oils), as well as appropriate herbal extracts obtained in the process of cold maceration and their biological activity against selected Escherichia coli strains: E. coli ATTC 25922, E. coli ATTC 10536, and E. coli 127 isolated from poultry waste. On the basis of the gas chromatography-mass spectrometry (GCMS) analysis, it was found that the commercial essential oils revealed considerable differences in terms of the composition and diversity of terpenes, terpenoids and sesquiterpenes as compared with the extracts obtained from plant material. The commercial clove, oregano, a…

0301 basic medicinePharmaceutical ScienceMicrobial Sensitivity Tests010402 general chemistrymedicine.disease_cause01 natural sciencesArticleAnalytical Chemistrylcsh:QD241-441Terpene03 medical and health scienceschemistry.chemical_compoundlcsh:Organic chemistryDrug DiscoverymedicineMaceration (wine)Escherichia coliOils VolatileCarvacrolFood sciencePhysical and Theoretical ChemistryEscherichia coliThymolessential oilsLimoneneChromatographyPlant ExtractsOrganic ChemistryTerpenoidgas chromatography-mass spectrometry0104 chemical sciences030104 developmental biologychemistryChemistry (miscellaneous)Molecular MedicineGas chromatography–mass spectrometryessential oils; gas chromatography-mass spectrometry; <i>Escherichia coli</i>Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry
researchProduct

Discovery and validation of 2-styryl substituted benzoxazin-4-ones as a novel scaffold for rhomboid protease inhibitors

2017

Abstract Rhomboids are intramembrane serine proteases with diverse physiological functions in organisms ranging from archaea to humans. Crystal structure analysis has provided a detailed understanding of the catalytic mechanism, and rhomboids have been implicated in various disease contexts. Unfortunately, the design of specific rhomboid inhibitors has lagged behind, and previously described small molecule inhibitors displayed insufficient potency and/or selectivity. Using a computer-aided approach, we focused on the discovery of novel scaffolds with reduced liabilities and the possibility for broad structural variations. Docking studies with the E. coli rhomboid GlpG indicated that 2-styry…

0301 basic medicineProteasesSerine Proteinase InhibitorsStereochemistrymedicine.medical_treatmentClinical BiochemistryPharmaceutical ScienceBiochemistryStyrenesSerine03 medical and health sciencesCatalytic DomainEndopeptidasesDrug DiscoveryEscherichia coliSerinemedicineAnimalsChymotrypsinDrosophila ProteinsHumansMolecular BiologyEnzyme AssaysSerine proteaseProtease030102 biochemistry & molecular biologybiologyBenzoxazinonesChemistryEscherichia coli ProteinsRhomboid proteaseRhomboidOrganic ChemistryMembrane ProteinsTransforming Growth Factor alphaBenzoxazinesDNA-Binding ProteinsMolecular Docking Simulation030104 developmental biologyDocking (molecular)Mutationbiology.proteinMolecular MedicineCattleDrosophilaBioorganic &amp; Medicinal Chemistry Letters
researchProduct

Insights into the inhibited form of the redox-sensitive SufE-like sulfur acceptor CsdE

2017

17 p.-8 fig.

0301 basic medicineProtein ConformationDimerlcsh:MedicineMolecular DynamicsCrystallography X-RayPhysical ChemistryBiochemistryDEAD-box RNA HelicasesMolecular dynamicschemistry.chemical_compoundComputational ChemistryNucleophileBiochemical Simulationslcsh:ScienceMultidisciplinaryCrystallographyChemistryOrganic CompoundsPhysicsEscherichia coli ProteinsCondensed Matter Physics3. Good healthPhysical sciencesChemistryCarbon-Sulfur LyasesBiochemistryCrystal StructureResearch ArticleChemical ElementsProtein subunitChemical physicschemistry.chemical_elementOxidative phosphorylationMolecular Dynamics Simulation03 medical and health sciencesThiolsEscherichia coliSolid State PhysicsProtein Interaction Domains and MotifsChemical BondingOrganic Chemistrylcsh:RChemical CompoundsBiology and Life SciencesComputational BiologyDimers (Chemical physics)Hydrogen BondingCell BiologySulfurAcceptorRedox sensitiveOxidative Stress030104 developmental biologyBiophysicslcsh:QProtein MultimerizationSulfur
researchProduct

Molecular topology: A new strategy for antimicrobial resistance control

2017

The control of antimicrobial resistance (AMR) seems to have come to an impasse. The use and abuse of antibacterial drugs has had major consequences on the genetic mutability of both pathogenic and nonpathogenic microorganisms, leading to the development of new highly resistant strains. Because of the complexity of this situation, an in silico strategy based on QSAR molecular topology was devised to identify synthetic molecules as antimicrobial agents not susceptible to one or several mechanisms of resistance such as: biofilms formation (BF), ionophore (IA) activity, epimerase (EI) activity or SOS system (RecA inhibition). After selecting a group of 19 compounds, five of them showed signific…

0301 basic medicineQuantitative structure–activity relationshipStaphylococcusIn silico030106 microbiologyMicrobial Sensitivity Testsmedicine.disease_causeMicrobiologyStructure-Activity Relationship03 medical and health sciencesAntibiotic resistanceDrug Resistance BacterialDrug DiscoveryEnterococcus faecalisEscherichia colimedicineEscherichia coliPharmacologyVirtual screeningDose-Response Relationship DrugMolecular StructureChemistryOrganic ChemistryBiofilmGeneral MedicineAntimicrobialAnti-Bacterial Agents030104 developmental biologyBiofilmsRegression AnalysisStaphylococcusEuropean Journal of Medicinal Chemistry
researchProduct