Search results for "Ether"
showing 10 items of 986 documents
CCDC 1522132: Experimental Crystal Structure Determination
2017
Related Article: Michael D. Weber, Marta Viciano-Chumillas, Donatella Armentano, Joan Cano, Rubén D. Costa|2017|Dalton Trans.|46|6312|doi:10.1039/C7DT00810D
CCDC 1828666: Experimental Crystal Structure Determination
2018
Related Article: Audrey Trommenschlager, Florian Chotard, Benoît Bertrand, Souheila Amor, Philippe Richard, Ali Bettaïeb, Catherine Paul, Jean-Louis Connat, Pierre Le Gendre, Ewen Bodio|2018|ChemMedChem|13|2408|doi:10.1002/cmdc.201800474
CCDC 699607: Experimental Crystal Structure Determination
2009
Related Article: M.Jung, A.Sharma, D.Hinderberger, S.Braun, U.Schatzschneider, E.Rentschler|2009|Eur.J.Inorg.Chem.||1495|doi:10.1002/ejic.200801248
CCDC 898735: Experimental Crystal Structure Determination
2013
Related Article: A.E.Ion, S.Nica, A.M.Madalan, F.Lloret, M.Julve, M.Andruh|2013|CrystEngComm|15|294|doi:10.1039/c2ce26469b
Synthesis, reactivity and structural studies of carboranyl thioethers and disulfides.
2005
The equimolar reaction of 1-SH-2-R-1,2-closo-C2B10H10 (R = Me, H, Ph) with KOH in ethanol produces the thiolate species [1-S-2-R-1,2-closo-C2B10H10]−. These react with iodine to give the disulfide bridged dicluster (1-S-2-R-1,2-closo-C2B10H10)2 (R = H, Me, Ph) compounds as analytically pure, white and air-stable solids in high yield. Synthesis of monothioether bridged species is synthetically more difficult. In fact three procedures have been tested to obtain the thioether bridged dicluster compounds (2-R-1,2-closo-C2B10H10)2S (R = Me, H, Ph) but only (2-Me-1,2-closo-C2B10H10)2S was successfully synthesized and characterized. Attempts to produce mixed compounds (1-R-1,2-closo-C2B10H10)S(1-R…
Synthesis of Lamellarin G Trimethyl Ether by von Miller-Plöchl-Type Cyclocondensation
2018
Hierarchical Beta zeolites as catalysts in a one-pot three-component cascade Prins–Friedel–Crafts reaction
2020
Hierarchical Beta zeolites obtained from concentrated reaction mixtures (H2O/Si = 2.5–7.0) in the presence of CTAB and their conventional and nanosponge analogues were investigated in a one-pot cascade environmentally friendly Prins–Friedel–Crafts reaction of butyraldehyde with 3-buten-1-ol and anisole under mild conditions (60 °C). The highest yields of the desired products with 4-aryltetrahydropyran structure were achieved when using hierarchical zeolites characterised by well-developed mesoporosity (facilitating the formation of bulky intermediates and products) and by an increased fraction of highly accessible (evaluated by TTBPy method) medium-strength Bronsted acid sites. Acid sites w…
Ion-Pair Complexation with Dibenzo[21]Crown-7 and Dibenzo[24]Crown-8 bis-Urea Receptors
2016
Synthesis and ion-pair complexation properties of novel ditopic bis-urea receptors based on dibenzo[21]crown-7 (R(1) ) and dibenzo[24]crown-8 (R(2) ) scaffolds have been studied in the solid state, solution, and gas phase. In a 4:1 CDCl3 /[D6 ]DMSO solution, both receptors clearly show positive heterotropic cooperativity toward halide anions when complexed with Rb(+) or Cs(+) , with the halide affinity increasing in order I(-) <Br(-) <Cl(-) . In solution, the rubidium complexes of both receptors have higher halide affinities compared to the caesium complexes. However, Rb(+) and Cs(+) complexes of R(2) show stronger affinities toward all the studied anions compared to the corresponding catio…
A comparative study of methanol carbonation on unsupported SnO2 and ZrO2
2009
International audience; The aim of this work was to explore the catalytic properties of SnO2 in the coupling of methanol with carbon dioxide to afford dimethyl carbonate. SnO2 nanopowders were produced by hydrolysis of tin tetra-tert-butoxide dissolved in n-butanol. The samples were much more active than a commercial one due to their higher surface areas. In addition, they exhibited excellent recyclability. However, comparison with ZrO2, prepared and tested under the same experimental conditions, showed that zirconia-based catalysts were more selective and are, among the heterogeneous catalysts already reported, still the more selective. SnO2 also catalyzed the formation of dimethyl ether l…
Iron( ii ) and cobalt( ii ) complexes based on anionic phenanthroline-imidazolate ligands: reversible single-crystal-to-single-crystal transformations
2018
A series of low-spin FeII and CoII complexes based on phenanthroline-imidazolate (PIMP) ligands are reported. The FeII complex (H9O4)[Fe(PIMP)3]·(C4H10O)2(H2O) (1a) shows reversible crystalline phase transformations to afford two new phases (H9O4)[Fe(PIMP)3]·(H2O) (1b) and (H9O4)[Fe(PIMP)3]·(C8H18O)(C4H10O)(H2O) (1c) by release of diethyl ether and absorption of diethyl/dibutyl ether, respectively. This reversible uptake/release of solvent molecules is a clear example of single-crystal-to-single-crystal transformation involving a discrete metal complex. On the other hand, the corresponding CoII complex (H9O4)[Co(PIMP)3]·(C4H10O)2(H2O)2 (2) does not exhibit similar phase transformations. In …