Search results for "Ether"

showing 10 items of 986 documents

CCDC 1522132: Experimental Crystal Structure Determination

2017

Related Article: Michael D. Weber, Marta Viciano-Chumillas, Donatella Armentano, Joan Cano, Rubén D. Costa|2017|Dalton Trans.|46|6312|doi:10.1039/C7DT00810D

(44'-dimethoxy-22'-bipyridine)-((99-dimethyl-9H-xanthene-45-diyl)bis(diphenylphosphine))-copper(i) tetrafluoroborate dichloromethane diethyl ether solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1828666: Experimental Crystal Structure Determination

2018

Related Article: Audrey Trommenschlager, Florian Chotard, Benoît Bertrand, Souheila Amor, Philippe Richard, Ali Bettaïeb, Catherine Paul, Jean-Louis Connat, Pierre Le Gendre, Ewen Bodio|2018|ChemMedChem|13|2408|doi:10.1002/cmdc.201800474

(7-[(7-methoxy-2-oxo-2H-1-benzopyran-4-yl)methyl]-13-dimethyl-37-dihydro-1H-purine-26-dione)-(triphenylphosphine)-gold(i) tetrafluoroborate diethyl ether solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 699607: Experimental Crystal Structure Determination

2009

Related Article: M.Jung, A.Sharma, D.Hinderberger, S.Braun, U.Schatzschneider, E.Rentschler|2009|Eur.J.Inorg.Chem.||1495|doi:10.1002/ejic.200801248

(mu2-4-(4455-Tetramethyl-45-dihydro-1H-imidazol-2-yl 3-oxide 1-oxyl)benzoato radical-OO')-(mu2-NNN'N'-tetrakis((1-(n-propyl)benzimidazol-2-yl)methyl)-2-oxidopropane-13-diamine-NN'N''N'''N''''N'''''OO)-di-zinc(ii) diperchlorate diethyl ether solvate sesquihydrateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 898735: Experimental Crystal Structure Determination

2013

Related Article: A.E.Ion, S.Nica, A.M.Madalan, F.Lloret, M.Julve, M.Andruh|2013|CrystEngComm|15|294|doi:10.1039/c2ce26469b

(mu~3~-246-Tris(((2-(dimethylamino)ethyl)imino)methyl)benzene-135-triolato)-tris(hydroxy(phenyl)acetato)-tri-copper diethyl ether solvateSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

Synthesis, reactivity and structural studies of carboranyl thioethers and disulfides.

2005

The equimolar reaction of 1-SH-2-R-1,2-closo-C2B10H10 (R = Me, H, Ph) with KOH in ethanol produces the thiolate species [1-S-2-R-1,2-closo-C2B10H10]−. These react with iodine to give the disulfide bridged dicluster (1-S-2-R-1,2-closo-C2B10H10)2 (R = H, Me, Ph) compounds as analytically pure, white and air-stable solids in high yield. Synthesis of monothioether bridged species is synthetically more difficult. In fact three procedures have been tested to obtain the thioether bridged dicluster compounds (2-R-1,2-closo-C2B10H10)2S (R = Me, H, Ph) but only (2-Me-1,2-closo-C2B10H10)2S was successfully synthesized and characterized. Attempts to produce mixed compounds (1-R-1,2-closo-C2B10H10)S(1-R…

010405 organic chemistryChemistryInorganic chemistrychemistry.chemical_elementCrystal structure010402 general chemistry01 natural sciencesMedicinal chemistrySulfur0104 chemical sciencesInorganic Chemistrychemistry.chemical_compoundThioetherYield (chemistry)Cluster (physics)Reactivity (chemistry)CarbonHOMO/LUMODalton transactions (Cambridge, England : 2003)
researchProduct

Synthesis of Lamellarin G Trimethyl Ether by von Miller-Plöchl-Type Cyclocondensation

2018

010405 organic chemistryChemistryLamellarin G trimethyl etherOrganic ChemistryTotal synthesisPhysical and Theoretical Chemistry010402 general chemistry01 natural sciencesMedicinal chemistry0104 chemical sciencesEuropean Journal of Organic Chemistry
researchProduct

Hierarchical Beta zeolites as catalysts in a one-pot three-component cascade Prins–Friedel–Crafts reaction

2020

Hierarchical Beta zeolites obtained from concentrated reaction mixtures (H2O/Si = 2.5–7.0) in the presence of CTAB and their conventional and nanosponge analogues were investigated in a one-pot cascade environmentally friendly Prins–Friedel–Crafts reaction of butyraldehyde with 3-buten-1-ol and anisole under mild conditions (60 °C). The highest yields of the desired products with 4-aryltetrahydropyran structure were achieved when using hierarchical zeolites characterised by well-developed mesoporosity (facilitating the formation of bulky intermediates and products) and by an increased fraction of highly accessible (evaluated by TTBPy method) medium-strength Bronsted acid sites. Acid sites w…

010405 organic chemistryEther010402 general chemistryAnisole01 natural sciencesPollutionEnvironmentally friendly0104 chemical sciencesCatalysis[CHIM.THEO]Chemical Sciences/Theoretical and/or physical chemistrychemistry.chemical_compoundAdsorptionchemistryEnvironmental ChemistryOrganic chemistryButyraldehydeBrønsted–Lowry acid–base theoryFriedel–Crafts reactionComputingMilieux_MISCELLANEOUSGreen Chemistry
researchProduct

Ion-Pair Complexation with Dibenzo[21]Crown-7 and Dibenzo[24]Crown-8 bis-Urea Receptors

2016

Synthesis and ion-pair complexation properties of novel ditopic bis-urea receptors based on dibenzo[21]crown-7 (R(1) ) and dibenzo[24]crown-8 (R(2) ) scaffolds have been studied in the solid state, solution, and gas phase. In a 4:1 CDCl3 /[D6 ]DMSO solution, both receptors clearly show positive heterotropic cooperativity toward halide anions when complexed with Rb(+) or Cs(+) , with the halide affinity increasing in order I(-) <Br(-) <Cl(-) . In solution, the rubidium complexes of both receptors have higher halide affinities compared to the caesium complexes. However, Rb(+) and Cs(+) complexes of R(2) show stronger affinities toward all the studied anions compared to the corresponding catio…

010405 organic chemistryHydrogen bondion-pair receptorscrown ethersOrganic ChemistryInorganic chemistrySupramolecular chemistrychemistry.chemical_elementHalideCooperativityGeneral ChemistryCrystal structure010402 general chemistry01 natural sciencesditopic receptorsCatalysis0104 chemical sciencesRubidiumCrystallographychemistryCaesiumbis-urea receptorsSelectivityta116Chemistry - A European Journal
researchProduct

A comparative study of methanol carbonation on unsupported SnO2 and ZrO2

2009

International audience; The aim of this work was to explore the catalytic properties of SnO2 in the coupling of methanol with carbon dioxide to afford dimethyl carbonate. SnO2 nanopowders were produced by hydrolysis of tin tetra-tert-butoxide dissolved in n-butanol. The samples were much more active than a commercial one due to their higher surface areas. In addition, they exhibited excellent recyclability. However, comparison with ZrO2, prepared and tested under the same experimental conditions, showed that zirconia-based catalysts were more selective and are, among the heterogeneous catalysts already reported, still the more selective. SnO2 also catalyzed the formation of dimethyl ether l…

010405 organic chemistryInorganic chemistry[ PHYS.COND.CM-MS ] Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]chemistry.chemical_elementGeneral Chemistry[CHIM.CATA]Chemical Sciences/Catalysis010402 general chemistryHeterogeneous catalysis01 natural sciencesCatalysis0104 chemical sciencesCatalysischemistry.chemical_compound[ CHIM.CATA ] Chemical Sciences/Catalysischemistry[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Dimethyl etherCrystalliteMethanolDimethyl carbonateTinPowder diffraction
researchProduct

Iron( ii ) and cobalt( ii ) complexes based on anionic phenanthroline-imidazolate ligands: reversible single-crystal-to-single-crystal transformations

2018

A series of low-spin FeII and CoII complexes based on phenanthroline-imidazolate (PIMP) ligands are reported. The FeII complex (H9O4)[Fe(PIMP)3]·(C4H10O)2(H2O) (1a) shows reversible crystalline phase transformations to afford two new phases (H9O4)[Fe(PIMP)3]·(H2O) (1b) and (H9O4)[Fe(PIMP)3]·(C8H18O)(C4H10O)(H2O) (1c) by release of diethyl ether and absorption of diethyl/dibutyl ether, respectively. This reversible uptake/release of solvent molecules is a clear example of single-crystal-to-single-crystal transformation involving a discrete metal complex. On the other hand, the corresponding CoII complex (H9O4)[Co(PIMP)3]·(C4H10O)2(H2O)2 (2) does not exhibit similar phase transformations. In …

010405 organic chemistryPhenanthrolinechemistry.chemical_elementGeneral Chemistry010402 general chemistryCondensed Matter Physics01 natural sciences3. Good health0104 chemical sciencesSolventDibutyl etherMetalchemistry.chemical_compoundCrystallographyDeprotonationchemistryvisual_artImidazolatevisual_art.visual_art_medium[CHIM]Chemical SciencesGeneral Materials Science[CHIM.COOR]Chemical Sciences/Coordination chemistryDiethyl etherCobaltComputingMilieux_MISCELLANEOUS
researchProduct