Search results for "Eukaryotic"

showing 4 items of 84 documents

Translation of HTT mRNA with expanded CAG repeats is regulated by the MID1-PP2A protein complex.

2012

Expansion of CAG repeats is a common feature of various neurodegenerative disorders, including Huntington's disease. Here we show that expanded CAG repeats bind to a translation regulatory protein complex containing MID1, protein phosphatase 2A and 40S ribosomal S6 kinase. Binding of the MID1-protein phosphatase 2A protein complex increases with CAG repeat size and stimulates translation of the CAG repeat expansion containing messenger RNA in a MID1-, protein phosphatase 2A- and mammalian target of rapamycin-dependent manner. Our data indicate that pathological CAG repeat expansions upregulate protein translation leading to an overproduction of aberrant protein and suggest that the MID1-com…

metabolism [Microtubule Proteins]General Physics and AstronomyHTT protein humanRibosomal s6 kinaseMice0302 clinical medicinemetabolism [Transcription Factors]Protein Phosphatase 2Luciferasesgenetics [Nerve Tissue Proteins]genetics [Protein Biosynthesis]0303 health sciencesHuntingtin ProteinMultidisciplinarybiologyTOR Serine-Threonine KinasesNuclear ProteinsTranslation (biology)3. Good healthmetabolism [Luciferases]Microtubule Proteinsddc:500metabolism [Nuclear Proteins]genetics [Trinucleotide Repeat Expansion]Protein Bindingcongenital hereditary and neonatal diseases and abnormalitiesMTOR protein humanUbiquitin-Protein LigasesBlotting WesternNerve Tissue Proteinsmetabolism [TOR Serine-Threonine Kinases]metabolism [RNA Messenger]General Biochemistry Genetics and Molecular Biology03 medical and health sciencesgenetics [RNA Messenger]mental disordersHuntingtin ProteinAnimalsHumansEukaryotic Small Ribosomal SubunitRNA MessengerNucleotide Motifs030304 developmental biologyMessenger RNAmetabolism [Nerve Tissue Proteins]RNAmetabolism [Protein Phosphatase 2]General ChemistryProtein phosphatase 2Molecular biologynervous system diseasesProtein Biosynthesisbiology.proteinTrinucleotide repeat expansionTrinucleotide Repeat Expansion030217 neurology & neurosurgeryMid1 protein humanHeLa CellsTranscription FactorsNature communications
researchProduct

CYGD: the Comprehensive Yeast Genome Database.

2005

The comprehensive resource is available under http://mips.gsf.de/genre/proj/yeast/.; International audience; The Comprehensive Yeast Genome Database (CYGD) compiles a comprehensive data resource for information on the cellular functions of the yeast Saccharomyces cerevisiae and related species, chosen as the best understood model organism for eukaryotes. The database serves as a common resource generated by a European consortium, going beyond the provision of sequence information and functional annotations on individual genes and proteins. In addition, it provides information on the physical and functional interactions among proteins as well as other genetic elements. These cellular network…

ved/biology.organism_classification_rank.speciesSACCHAROMYCES CEREVISIAE GENOME;COMPREHENSIVE YEAST GENOME DATABASE;CYGD;PROTEIN INTERACTION;EUROPEAN CONSORTIUM;SEQUENCE INFORMATION;YEAST GENOME;SEQUENCED EUKARYOTIC GENOMEcomputer.software_genreGenomeSaccharomycesUser-Computer InterfaceSequence Analysis ProteinDatabases GeneticYEAST GENOME[INFO.INFO-BI] Computer Science [cs]/Bioinformatics [q-bio.QM]0303 health sciences[SDV.BIBS] Life Sciences [q-bio]/Quantitative Methods [q-bio.QM]biologyDatabase030302 biochemistry & molecular biologyEUROPEAN CONSORTIUMArticlesGenomicsCYGD[SDV.BIBS]Life Sciences [q-bio]/Quantitative Methods [q-bio.QM]PROTEIN INTERACTIONSEQUENCED EUKARYOTIC GENOMEnucleic acidsCOMPREHENSIVE YEAST GENOME DATABASEBio-informatiqueGenome FungalSEQUENCE INFORMATIONSaccharomyces cerevisiae ProteinsBioinformaticsSaccharomyces cerevisiae610Saccharomyces cerevisiaeGenètica molecularSACCHAROMYCES CEREVISIAE GENOMESaccharomyces03 medical and health sciencesAnnotationGeneticsSIMAPModel organismGene030304 developmental biologyBinding Sitesved/biologyMembrane ProteinsMembrane Transport Proteinsbiology.organism_classificationYeast[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM]computerSDV:BIBSTranscription Factors
researchProduct

Viral and cellular determinants of hepatitis C virus RNA replication in cell culture.

2003

Studies on the replication of hepatitis C virus (HCV) have been facilitated by the development of selectable subgenomic replicons replicating in the human hepatoma cell line Huh-7 at a surprisingly high level. Analysis of the replicon population in selected cells revealed the occurrence of cell culture-adaptive mutations that enhance RNA replication substantially. To gain a better understanding of HCV cell culture adaptation, we characterized conserved mutations identified by sequence analysis of 26 independent replicon cell clones for their effect on RNA replication. Mutations enhancing replication were found in nearly every nonstructural (NS) protein, and they could be subdivided into at …

virusesImmunologyCell Culture TechniquesReplicationRNA-dependent RNA polymeraseEukaryotic DNA replicationHepacivirusViral Nonstructural ProteinsBiologyVirus ReplicationOrigin of replicationMicrobiologyReplication factor CControl of chromosome duplicationVirologyTumor Cells Cultured[SDV.BBM] Life Sciences [q-bio]/Biochemistry Molecular BiologyHumansRepliconVirologyAmino Acid SubstitutionViral replicationInsect ScienceRNA ViralOrigin recognition complexRepliconRibosomes
researchProduct

Molecular Basis of SARS-CoV-2 Nsp1-Induced Immune Translational Shutdown as Revealed by All-Atom Simulations.

2021

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic represents the most severe global health crisis in modern human history. One of the major SARS-CoV-2 virulence factors is nonstructural protein 1 (Nsp1), which, outcompeting with the binding of host mRNA to the human ribosome, triggers a translation shutdown of the host immune system. Here, microsecond-long all-atom simulations of the C-terminal portion of the SARS-CoV-2/SARS-CoV Nsp1 in complex with the 40S ribosome disclose that SARS-CoV-2 Nsp1 has evolved from its SARS-CoV ortholog to more effectively hijack the ribosome by undergoing a critical switch of Q/E158 and E/Q159 residues that perfects Nsp1's interactions…

virusesSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2)VirulenceBiologyMolecular Dynamics SimulationViral Nonstructural ProteinsRibosomeImmune systemHumansGeneral Materials ScienceEukaryotic Small Ribosomal SubunitPhysical and Theoretical Chemistryskin and connective tissue diseasesRibosome Subunits Small EukaryoticMessenger RNANSP1SARS-CoV-2fungivirus diseasesCOVID-19Translation (biology)Hydrogen BondingCell biologybody regionsSettore CHIM/03 - Chimica Generale E InorganicaProtein BindingThe journal of physical chemistry letters
researchProduct