Search results for "Evolutionary algorithms"

showing 10 items of 24 documents

A New Paradigm in Interactive Evolutionary Multiobjective Optimization

2020

Over the years, scalarization functions have been used to solve multiobjective optimization problems by converting them to one or more single objective optimization problem(s). This study proposes a novel idea of solving multiobjective optimization problems in an interactive manner by using multiple scalarization functions to map vectors in the objective space to a new, so-called preference incorporated space (PIS). In this way, the original problem is converted into a new multiobjective optimization problem with typically fewer objectives in the PIS. This mapping enables a modular incorporation of decision maker’s preferences to convert any evolutionary algorithm to an interactive one, whe…

050101 languages & linguisticsMathematical optimizationComputer sciencemedia_common.quotation_subjectdecision makerEvolutionary algorithmpäätöksentukijärjestelmätevoluutiolaskentapreference information02 engineering and technologySpace (commercial competition)Multi-objective optimizationoptimointiachievement scalarizing functionsalgoritmit0202 electrical engineering electronic engineering information engineering0501 psychology and cognitive sciencesQuality (business)evolutionary algorithmsFunction (engineering)media_commonbusiness.industry05 social sciencesinteractive methodsModular designDecision makermonitavoiteoptimointiPreference020201 artificial intelligence & image processingbusiness
researchProduct

Impact of chaotic dynamics on the performance of metaheuristic optimization algorithms : An experimental analysis

2022

Random mechanisms including mutations are an internal part of evolutionary algorithms, which are based on the fundamental ideas of Darwin's theory of evolution as well as Mendel's theory of genetic heritage. In this paper, we debate whether pseudo-random processes are needed for evolutionary algorithms or whether deterministic chaos, which is not a random process, can be suitably used instead. Specifically, we compare the performance of 10 evolutionary algorithms driven by chaotic dynamics and pseudo-random number generators using chaotic processes as a comparative study. In this study, the logistic equation is employed for generating periodical sequences of different lengths, which are use…

Class (set theory)Information Systems and ManagementTheoretical computer scienceComputer scienceEvolutionary algorithmChaoticalgoritmiikkaevoluutiolaskentaparviälyTheoretical Computer ScienceArtificial IntelligencealgoritmitLogistic functionevolutionary algorithmsRandomnessdeterministic chaoskaaosteoriaStochastic processswarm intelligencealgorithm performanceComputer Science Applicationsalgorithm dynamicsCHAOS (operating system)Control and Systems EngineeringDarwin (ADL)Software
researchProduct

GenClust: A genetic algorithm for clustering gene expression data

2005

Abstract Background Clustering is a key step in the analysis of gene expression data, and in fact, many classical clustering algorithms are used, or more innovative ones have been designed and validated for the task. Despite the widespread use of artificial intelligence techniques in bioinformatics and, more generally, data analysis, there are very few clustering algorithms based on the genetic paradigm, yet that paradigm has great potential in finding good heuristic solutions to a difficult optimization problem such as clustering. Results GenClust is a new genetic algorithm for clustering gene expression data. It has two key features: (a) a novel coding of the search space that is simple, …

Clustering high-dimensional dataDNA ComplementaryComputer scienceRand indexCorrelation clusteringOligonucleotidesEvolutionary algorithmlcsh:Computer applications to medicine. Medical informaticscomputer.software_genreBiochemistryPattern Recognition AutomatedBiclusteringOpen Reading FramesStructural BiologyCURE data clustering algorithmConsensus clusteringGenetic algorithmCluster AnalysisCluster analysislcsh:QH301-705.5Molecular BiologyGene expression data Clustering Evolutionary algorithmsOligonucleotide Array Sequence AnalysisModels StatisticalBrown clusteringHeuristicGene Expression ProfilingApplied MathematicsComputational BiologyComputer Science Applicationslcsh:Biology (General)Gene Expression RegulationMutationlcsh:R858-859.7Data miningSequence AlignmentcomputerSoftwareAlgorithmsBMC Bioinformatics
researchProduct

An evolutionary method for complex-process optimization

2010

10 páginas, 7 figuras, 7 tablas

Continuous optimizationMathematical optimizationOptimization problemGeneral Computer ScienceEvolutionary algorithmMetaheuristicsManagement Science and Operations ResearchEvolutionary algorithmsMulti-objective optimizationComplex-process optimizationContinuous optimizationModeling and SimulationGenetic algorithmDerivative-free optimizationGlobal optimizationMulti-swarm optimizationMetaheuristicMathematicsComputers & Operations Research
researchProduct

Disturbed Exploitation compact Differential Evolution for Limited Memory Optimization Problems

2011

This paper proposes a novel and unconventional Memetic Computing approach for solving continuous optimization problems characterized by memory limitations. The proposed algorithm, unlike employing an explorative evolutionary framework and a set of local search algorithms, employs multiple exploitative search within the main framework and performs a multiple step global search by means of a randomized perturbation of the virtual population corresponding to a periodical randomization of the search for the exploitative operators. The proposed Memetic Computing approach is based on a populationless (compact) evolutionary framework which, instead of processing a population of solutions, handles …

Continuous optimizationta113education.field_of_studyMathematical optimizationInformation Systems and ManagementOptimization problemdifferential evolutionCrossoverPopulationEvolutionary algorithmComputer Science ApplicationsTheoretical Computer ScienceArtificial IntelligenceControl and Systems Engineeringmemetic computingDifferential evolutionMemetic algorithmevolutionary algorithmseducationcompact algorithmsSoftwarePremature convergenceMathematicsInformation Sciences
researchProduct

Evolutionary design optimization with Nash games and hybridized mesh/meshless methods in computational fluid dynamics

2012

Eulerin virtausmallihybridized mesh/meshless methodsvirtauslaskentageneettiset algoritmitevoluutioalgoritmitposition reconstructionevoluutiolaskentahierarchical genetic algorithmsdynamic cloudsuunnitteluoptimointishape optimizationalgoritmitpeliteoriaadaptive meshless methodevolutionary algorithmsNash games
researchProduct

An Integrated fuzzy Cells-classifier

2006

The term soft-computing has been introduced by Zadeh in 1994. Soft-computing provides an appropriate paradigm to program malleable and smooth concepts. In this paper a genetic algorithm is proposed to fuse the classification results due to different distance functions. The combination is based on the optimization of a vote strategy and it is applied to cells classification.

Evolutionary algorithms Classifier ensembleSettore INF/01 - Informaticabusiness.industryComputer scienceArtificial intelligencebusinessFuzzy logicClassifier (UML)Global optimization problem
researchProduct

Ockham's Razor in Memetic Computing: Three Stage Optimal Memetic Exploration

2012

Memetic computing is a subject in computer science which considers complex structures as the combination of simple agents, memes, whose evolutionary interactions lead to intelligent structures capable of problem-solving. This paper focuses on memetic computing optimization algorithms and proposes a counter-tendency approach for algorithmic design. Research in the field tends to go in the direction of improving existing algorithms by combining different methods or through the formulation of more complicated structures. Contrary to this trend, we instead focus on simplicity, proposing a structurally simple algorithm with emphasis on processing only one solution at a time. The proposed algorit…

FOS: Computer and information sciencesComputer Science - Machine LearningInformation Systems and ManagementComputer scienceComputer Science - Artificial Intelligencemedia_common.quotation_subjectEvolutionary algorithmComputational intelligenceField (computer science)Theoretical Computer ScienceMachine Learning (cs.LG)Artificial IntelligenceSimplicitymemetic algorithmsevolutionary algorithmsmedia_common:Engineering::Computer science and engineering [DRNTU]business.industrycomputational intelligence optimizationComputer Science ApplicationsArtificial Intelligence (cs.AI)Control and Systems Engineeringmemetic computing:Engineering::Electrical and electronic engineering [DRNTU]Memetic algorithmAlgorithm designArtificial intelligencebusinessSoftware
researchProduct

An Interactive Simple Indicator-Based Evolutionary Algorithm (I-SIBEA) for Multiobjective Optimization Problems

2015

This paper presents a new preference based interactive evolutionary algorithm (I-SIBEA) for solving multiobjective optimization problems using weighted hypervolume. Here the decision maker iteratively provides her/his preference information in the form of identifying preferred and/or non-preferred solutions from a set of nondominated solutions. This preference information provided by the decision maker is used to assign weights of the weighted hypervolume calculation to solutions in subsequent generations. In any generation, the weighted hypervolume is calculated and solutions are selected to the next generation based on their contribution to the weighted hypervolume. The algorithm is compa…

Flexibility (engineering)Set (abstract data type)Mathematical optimizationComputer scienceBenchmark (computing)Evolutionary algorithmmultiobjective optimizationInteractive evolutionary computationevolutionary algorithmsinteractive methodsMulti-objective optimizationEvolutionary programmingPreference
researchProduct

A genetic integrated fuzzy classifier

2005

This paper introduces a new classifier, that is based on fuzzy-integration schemes controlled by a genetic optimisation procedure. Two different types of integration are proposed here, and are validated by experiments on real data sets of biological cells. The performance of our classifier is tested against a feed-forward neural network and a Support Vector Machine. Results show the good performance and robustness of the integrated classifier strategies.

Fuzzy classificationNeuro-fuzzyComputer scienceFuzzy setMachine learningcomputer.software_genreClassification Classifier Ensemble Evolutionary Algorithms.Artificial IntelligenceRobustness (computer science)Genetic algorithmCluster analysisAdaptive neuro fuzzy inference systemLearning classifier systemSettore INF/01 - InformaticaArtificial neural networkStructured support vector machinebusiness.industryPattern recognitionQuadratic classifierSupport vector machineComputingMethodologies_PATTERNRECOGNITIONSignal ProcessingMargin classifierFuzzy set operationsComputer Vision and Pattern RecognitionArtificial intelligencebusinesscomputerClassifier (UML)SoftwarePattern Recognition Letters
researchProduct