Search results for "Exafs"

showing 10 items of 88 documents

Phase stability and electronic structure of iridium metal at the megabar range

2019

[EN] The 5d transition metals have attracted specific interest for high-pressure studies due to their extraordinary stability and intriguing electronic properties. In particular, iridium metal has been proposed to exhibit a recently discovered pressure-induced electronic transition, the so-called core-level crossing transition at the lowest pressure among all the 5d transition metals. Here, we report an experimental structural characterization of iridium by x-ray probes sensitive to both long- and short-range order in matter. Synchrotron-based powder x-ray diffraction results highlight a large stability range (up to 1.4 Mbar) of the low-pressure phase. The compressibility behaviour was char…

0301 basic medicineMaterials scienceAbsorption spectroscopySciencechemistry.chemical_elementElectronic structureMolecular electronic transitionArticle03 medical and health sciencessymbols.namesake0302 clinical medicineTransition metalIridiumSpectroscopyCondensed-matter physicsSpectroscopyExafsBulk modulusMultidisciplinaryFermi levelQRCondensed Matter Physics030104 developmental biologychemistryChemical physicsFISICA APLICADAsymbolsMedicineDen kondenserade materiens fysik030217 neurology & neurosurgeryPressures
researchProduct

Decorated pottery study: Analysis of pigments by x-ray absorbance spectroscopy measurements

2007

Characterization of pigments on decorated pottery fragments has been fully carried out by nondestructive x-ray absorbance spectroscopy (XAS). The samples were a series of pottery shards excavated from the archeological site of Caltagirone (Sicily, Italy), a well-known ceramic production center. Aesthetical criteria and morphological observations allowed us to attribute the samples to quite different historical periods, starting from the 18th century B.C. up to the 16th century A.D. An extensive time interval led us to suppose that different materials and techniques were used for the production of the ceramic paste and also for the preparation of pigments. XAS measurements were performed at …

ABSORPTION FINE-STRUCTUREX-ray absorption spectroscopyMaterials scienceExtended X-ray absorption fine structureAbsorption spectroscopyIDENTIFICATIONXASXAFSx-ray absorbance spectroscopy; XANES; EXAFS; pottery shardsXRFAnalytical chemistryGeneral Physics and AstronomyCOPPERXANESEXAFS XANES pigment potterypigmentvisual_artvisual_art.visual_art_mediumpigment; XRF; XASPotteryCeramicAbsorption (electromagnetic radiation)SpectroscopyRAMAN MICROSCOPY
researchProduct

Analysis of the U L3-edge X-ray absorption spectra in UO2 using molecular dynamics simulations

2017

This work was supported by a grant from the Swiss National Supercomputing Centre (CSCS) under the project ID s444. The resource allocation within the PSI share at CSCS and on the PSI compute cluster Merlin4 is also acknowledged. D. B. is grateful for a fellowship within the Sciex-NMS programme. A. K. was supported by Latvian Science Council Grant no. 187/2012.

Absorption spectroscopyUranium dioxideAb initioEnergy Engineering and Power Technologychemistry.chemical_elementNanotechnology02 engineering and technologyMolecular dynamics01 natural sciencesMolecular physicschemistry.chemical_compoundUranium dioxide0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]Safety Risk Reliability and QualitySpectroscopyAbsorption (electromagnetic radiation)Waste Management and Disposal010302 applied physicsPhysicsX-ray absorption spectroscopyExtended X-ray absorption fine structureX-ray absorption spectroscopyUranium021001 nanoscience & nanotechnologyEXAFSNuclear Energy and Engineeringchemistry0210 nano-technologyCP2K
researchProduct

The defined adsorption site of sodium on the TiO2(110)–(1×1) surface

2004

The adsorption site of sodium on the TiO2(1 1 0)–(1 × 1) surface was studied by extended X-ray absorption fine structure. For coverage ranging between 0.25 and 0.5 ML, we find that sodium is on an ‘in-between' site where it is bound to two bridging oxygen atoms at 2.25 Å and one in-plane oxygen atom at 2.40 Å, in full agreement with DFT calculations. At higher coverage the site becomes an hollow site where the sodium atom is equidistant to the three oxygen atoms at 2.30 Å, while metallic sodium clusters are also formed at the surface.

Alkali metalsSodiumInorganic chemistrychemistry.chemical_element02 engineering and technologyExtended X-ray absorption fine structure (EXAFS)01 natural sciencesOxygenMetalAdsorption0103 physical sciencesAtomMaterials Chemistry010306 general physicsTitanium oxideExtended X-ray absorption fine structureChemistrySurfaces and Interfaces021001 nanoscience & nanotechnologyCondensed Matter PhysicsAlkali metalSurfaces Coatings and FilmsCrystallographyvisual_artvisual_art.visual_art_mediumAbsorption (chemistry)0210 nano-technologySurface Science
researchProduct

Speciation of Sb in airborne particulate matter, vehicle brake linings, and brake pad wear residues

2013

Insights into the speciation of Sb in samples of brake linings, brake pad wear residues, road dust, and atmospheric particulate matter PM10 and PM2.5 were obtained combining several well established and advanced characterization techniques, such as scanning electron microscopy e energy dispersive spectrometry (SEM-EDS), inductively coupled plasma mass spectrometry (ICP-MS) and synchrotron radiation X-ray absorption spectroscopy (SR-XAS). The advantage of SR-XAS is that samples do not undergo any chemical treatment prior to measurements, thus excluding possible alterations. These analyses revealed that the samples of wheel rims dust, road dust, and atmospheric particulate matter are composed…

Atmospheric ScienceMaterials scienceBrake liningMetallurgyAnalytical chemistryOxidechemistry.chemical_elementParticulatesSettore GEO/08 - Geochimica E VulcanologiaBrake padchemistry.chemical_compoundAntimonychemistryXAS XANESEXAFS Antimony Particulate matter Brake liningsBrakehuman activitiesStibniteInductively coupled plasma mass spectrometryGeneral Environmental ScienceAtmospheric Environment
researchProduct

Evidence of nickel ions dimerization in NiWO$_4$ and NiWO$_4$-ZnWO$_4$ solid solutions probed by EXAFS spectroscopy and reverse Monte Carlo simulatio…

2021

G.B. acknowledges the financial support provided by the State Education Development Agency for project No.1.1.1.2/VIAA/3/19/444 (agreement No. 1.1.1.2/16/I/001) realized at the Institute of Solid State Physics, University of Latvia. A.K. and A.K. would like to thank the support of the Latvian Council of Science project No. lzp-2019/1-0071. Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART2.

Condensed Matter - Materials ScienceEXAFSNiWO4solid solutions:NATURAL SCIENCES:Physics [Research Subject Categories]Materials Science (cond-mat.mtrl-sci)FOS: Physical sciencesZnWO4antiferromagnetsreverse Monte Carlo
researchProduct

In Situ Study of Zinc Peroxide Decomposition to Zinc Oxide by X‐Ray Absorption Spectroscopy and Reverse Monte Carlo Simulations

2022

The authors wish to thank Dr. R. Kalendarev for the synthesis of ZnO2 sample. A.K. would like to thank the financial support of the ERDF Project No. 1.1.1.1/20/A/060. The experiment at the MAX IV synchrotron was performed within the project 20190823. Institute of Solid State Physics, University of Latvia as the Center of Excellence has received funding from the European Union's Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement No. 739508, project CAMART2.

Condensed Matter - Materials Sciencereverse Monte Carlo methodX-ray absorption spectroscopyMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences:NATURAL SCIENCES::Physics [Research Subject Categories]Condensed Matter PhysicsElectronic Optical and Magnetic MaterialsEXAFSCondensed Matter::Materials Sciencephase transitionZnOPhysics::Atomic and Molecular ClustersZnO2physica status solidi (b)
researchProduct

Local disorder studied inSrTiO3at low temperature by EXAFS spectroscopy

1994

The temperature dependence of the local distortions in ${\mathrm{SrTiO}}_{3}$ has been studied by EXAFS spectroscopy at the titanium K edge (4982 eV). The oxygen-ion Debye-Waller factor ${\mathrm{\ensuremath{\sigma}}}_{0}^{2}$ has been determined from 4.5 to 240 K. The antiferrodistortive transition at 105 K is evidenced by a step in this Debye-Waller factor. At about 31 K, a maximum of ${\mathrm{\ensuremath{\sigma}}}_{0}^{2}$ is detected and the EXAFS oscillations due to the first oxygen shell increase. This is the signature of a maximum disorder in the lattice vibrations in this temperature range. A quasiharmonic model with a sinusoidal modulation of the Ti-O distance cannot account for t…

Condensed Matter::Materials ScienceMaterials scienceExafs spectroscopyNuclear magnetic resonanceCondensed matter physicsK-edgeExtended X-ray absorption fine structureLattice (group)Shell (structure)Lattice vibrationAtmospheric temperature rangeSinusoidal modulationPhysical Review B
researchProduct

Local structure of A-atom in ABO3 perovskites studies by RMC-EXAFS

2020

The measurements of Sr K-edge XAFS were performed under the approval of Proposal No. 97G042 of Photon Factory (KEK) and partially supported by the Research Grants of Hirosaki University. This work was supported by Bruce Ravel providing data for BTO. Boby Joseph acknowledges IISc Bangalore and ICTP Trieste for financial support through the award of the IISc-ICTP fellowship.

Correlation effectsDiffractionX-ray absorption spectroscopyRadiationMaterials scienceExtended X-ray absorption fine structureAbsorption spectroscopy010308 nuclear & particles physicsReverse Monte CarloExtended X-ray absorption fine structure (EXAFS)01 natural sciencesMolecular physicsSpectral line030218 nuclear medicine & medical imagingCondensed Matter::Materials Science03 medical and health sciences0302 clinical medicine0103 physical sciencesAtom:NATURAL SCIENCES:Physics [Research Subject Categories]PerovskitesReverse Monte CarloSpectroscopyX-ray absorption near edge structure (XANES)Radiation Physics and Chemistry
researchProduct

Effects of capping agent on cobalt nanoparticles

2009

The achievement of high information density and fast recording rate in memory devices crucially depends on the structure of magnetic domains. In this paper cobalt nanoparticles are synthesised using two capping agents (TOA, ODA) and two different preparation routes: thermal decomposition (TD) and Solvated Metal Atom Dispersion (SMAD). The interaction of capping agents with free metal clusters and their influence on Co nanoparticles size, atomic structure and oxidation state is investigated by means of X-ray diffraction and X-ray absorption spectroscopy.

EXAFS XRD cobalt nanoparticle
researchProduct