Search results for "Existence theorem"
showing 10 items of 15 documents
Zur Existenz von Lösungen gewisser Randwertaufgaben
1971
With the aid of some known results about integral equations of the Hammerstein type there is proofed an existence theorem for the following class of boundary value problems−y″−l 2 y′=f(x,y),y(a)=y(b)=0,l 2>0 mit|f(x, y)|=0,l 3 (x)>0. The existence range is determined by the greatest eigenvalue of some linear problem.
Fixed Point Theorems in Partially Ordered Metric Spaces and Existence Results for Integral Equations
2012
We derive some new coincidence and common fixed point theorems for self-mappings satisfying a generalized contractive condition in partially ordered metric spaces. As applications of the presented theorems, we obtain fixed point results for generalized contraction of integral type and we prove an existence theorem for solutions of a system of integral equations.
Minimizing total variation flow
2000
We prove existence and uniqueness of weak solutions for the minimizing total variation flow with initial data in $L^1$. We prove that the length of the level sets of the solution, i.e., the boundaries of the level sets, decreases with time, as one would expect, and the solution converges to the spatial average of the initial datum as $t \to \infty$. We also prove that local maxima strictly decrease with time; in particular, flat zones immediately decrease their level. We display some numerical experiments illustrating these facts.
Sur les problèmes d'optimisation structurelle
2000
We discuss existence theorems for shape optimization and material distribution problems. The conditions that we impose on the unknown sets are continuity of the boundary, respectively a certain measurability hypothesis. peerReviewed
Optimal shape design and unilateral boundary value problems: Part II
2007
In the first part we give a general existence theorem and a regularization method for an optimal control problem where the control is a domain in R″ and where the system is governed by a state relation which includes differential equations as well as inequalities. In the second part applications for optimal shape design problems governed by the Dirichlet-Signorini boundary value problem are presented. Several numerical examples are included.
Best proximity points: Convergence and existence theorems for p-cyclic mappings
2010
Abstract We introduce a new class of mappings, called p -cyclic φ -contractions, which contains the p -cyclic contraction mappings as a subclass. Then, convergence and existence results of best proximity points for p -cyclic φ -contraction mappings are obtained. Moreover, we prove results of the existence of best proximity points in a reflexive Banach space. These results are generalizations of the results of Al-Thagafi and Shahzad (2009) [8] .
Quasi-conformal mapping theorem and bifurcations
1998
LetH be a germ of holomorphic diffeomorphism at 0 ∈ ℂ. Using the existence theorem for quasi-conformal mappings, it is possible to prove that there exists a multivalued germS at 0, such thatS(ze 2πi )=H○S(z) (1). IfH λ is an unfolding of diffeomorphisms depending on λ ∈ (ℂ,0), withH 0=Id, one introduces its ideal $$\mathcal{I}_H$$ . It is the ideal generated by the germs of coefficients (a i (λ), 0) at 0 ∈ ℂ k , whereH λ(z)−z=Σa i (λ)z i . Then one can find a parameter solutionS λ (z) of (1) which has at each pointz 0 belonging to the domain of definition ofS 0, an expansion in seriesS λ(z)=z+Σb i (λ)(z−z 0) i with $$(b_i ,0) \in \mathcal{I}_H$$ , for alli. This result may be applied to the…
The forgotten mathematical legacy of Peano
2019
International audience; The formulations that Peano gave to many mathematical notions at the end of the 19th century were so perfect and modern that they have become standard today. A formal language of logic that he created, enabled him to perceive mathematics with great precision and depth. He described mathematics axiomatically basing the reasoning exclusively on logical and set-theoretical primitive terms and properties, which was revolutionary at that time. Yet, numerous Peano’s contributions remain either unremembered or underestimated.
Krasnosel'skiĭ-Schaefer type method in the existence problems
2019
We consider a general integral equation satisfying algebraic conditions in a Banach space. Using Krasnosel'skii-Schaefer type method and technical assumptions, we prove an existence theorem producing a periodic solution of some nonlinear integral equation.
Global fixed point proof of time-dependent density-functional theory
2011
We reformulate and generalize the uniqueness and existence proofs of time-dependent density-functional theory. The central idea is to restate the fundamental one-to-one correspondence between densities and potentials as a global fixed point question for potentials on a given time-interval. We show that the unique fixed point, i.e. the unique potential generating a given density, is reached as the limiting point of an iterative procedure. The one-to-one correspondence between densities and potentials is a straightforward result provided that the response function of the divergence of the internal forces is bounded. The existence, i.e. the v-representability of a density, can be proven as wel…