Search results for "Expectation."
showing 10 items of 191 documents
Spin-restricted open-shell coupled-cluster theory
1997
Spin-restricted CC theory is suggested as a new approach for the treatment of high-spin open-shell systems in CC theory. Spin constraints are imposed on the wave function in the sense that the projected spin eigenvalue equations are fulfilled within the (truncated) excitation space. These constraints allow a reduction in the number of independent amplitudes, thus decreasing the computational cost when implemented efficiently. The approach ensures that the spin expectation value always corresponds to the exact value, though the wave function is (for truncated CC treatments) not rigorously spin-adapted. For the specific case of high-spin doublets, detailed equations are derived for amplitudes…
Eternal hilltop inflation
2016
We consider eternal inflation in hilltop-type inflation models, favored by current data, in which the scalar field in inflation rolls off of a local maximum of the potential. Unlike chaotic or plateau-type inflation models, in hilltop inflation the region of field space which supports eternal inflation is finite, and the expansion rate $H_{EI}$ during eternal inflation is almost exactly the same as the expansion rate $H_*$ during slow roll inflation. Therefore, in any given Hubble volume, there is a finite and calculable expectation value for the lifetime of the "eternal" inflation phase, during which quantum flucutations dominate over classical field evolution. We show that despite this, i…
Electromagnetic sum rules for light nuclei
2008
Electromagnetic sum rules describe gross features of the electromagnetic structure of nuclei 1). A well known example is the Thomas-Reiche-Kuhn (TRK) sum rule, which relates the integrated total El-absorption cross section to the ground state expectation value of the double commutator of the dipole operator D with the nuclear Hamiltonian. While the k inet ic energy gives a model independent contr ibut ion, i . e . , the classical sum rule ~cl = 60 NZ/A MeV mb, the nuclear twobody potential gives an additional contr ibution in the presence of exchange and/or momentum dependent (or nonlocal) forces. In this case, I
Goodness-of-fit tests in many dimensions
2004
A method is presented to construct goodness-of-fit statistics in many dimensions for which the distribution of all possible test results in the limit of an infinite number of data becomes Gaussian if also the number of dimensions becomes infinite. Furthermore, an explicit example is presented, for which this distribution as good as only depends on the expectation value and the variance of the statistic for any dimension larger than one.
Simplicial Quantum Gravity on a Randomly Triangulated Sphere
1999
We study 2D quantum gravity on spherical topologies employing the Regge calculus approach with the dl/l measure. Instead of the normally used fixed non-regular triangulation we study random triangulations which are generated by the standard Voronoi-Delaunay procedure. For each system size we average the results over four different realizations of the random lattices. We compare both types of triangulations quantitatively and investigate how the difference in the expectation value of the squared curvature, $R^2$, for fixed and random triangulations depends on the lattice size and the surface area A. We try to measure the string susceptibility exponents through finite-size scaling analyses of…
Measure dependence of 2D simplicial quantum gravity
1995
We study pure 2D Euclidean quantum gravity with $R^2$ interaction on spherical lattices, employing Regge's formulation. We attempt to measure the string susceptibility exponent $\gamma_{\rm str}$ by using a finite-size scaling Ansatz in the expectation value of $R^2$. To check on effects of the path integral measure we investigate two scale invariant measures, the "computer" measure $dl/l$ and the Misner measure $dl/\sqrt A$.
Left-right symmetry and Neutrino Stability
1995
We consider a left-right symmetric model in which neutrinos acquire mass due to the spontaneous violation of both the gauged $B-L$ and a global $U(1)$ symmetry broken by the vacuum expectation value (VEV) of a gauge singlet scalar boson $\VEV{\sigma}$. For suitable choices of $\VEV{\sigma}$ consistent with all laboratory and astrophysical observations neutrinos will be unstable against majoron emission. All neutrino masses in the keV to MeV range are possible, since the expected neutrino decay lifetimes can be short enough to dilute their relic density below the cosmologically required level. A wide variety of possible new phenomena, associated to the presence of left-right symmetry and/or …
Phenomenology of supersymmetry with broken R-parity
1985
Abstract In some phenomenological supersymmetric models R -parity (+1 for particles, −1 for sparticles) is spontaneously broken along with tau-lepton number L τ by a vacuum expectation value υ τ of the tau sneutrino ν τ . To avoid excess stellar energy loss through majorons, there should also be explicit L τ violation through right-handed neutrinos. To have a sufficiently light ν τ , either υ τ is very small which is unnatural and boring, and/or the Higgs mixing parameter ϵ is very small. We find that in the limit ϵ → 0: -both the forward-backward asymmetry in e + e − → τ + τ − and the τ lifetime are unchanged, -Z 0 → ggν⊥ decays are possible where ν τ is an extra neutrino, -squarks and glu…
Tau lepton mixing with charginos and its effects on chargino searches at e+e− colliders
1998
In bilinear R-Parity violating models where a term \epsilon_3L_3H_2 is introduced in the superpotential, the tau lepton can mix with charginos. We show that this mixing is fully compatible with LEP1 precision measurements of the Z\tau\tau and W\tau\nu_\tau couplings even for large values of \epsilon_3 and of the induced vacuum expectation value v_3 of the tau-sneutrino. The single production of charginos at e+e- colliders is possible in this case and we present numerical values of the cross-section at LEP1, LEP2 and an NLC. We find maximum values of 10 pb at LEP1 and 1 fb at NLC, while the corresponding values at LEP2 are too small to observe.
A Unified Approach to High Density: Pion Fluctuations in Skyrmion Matter
2003
As the first in a series of systematic work on dense hadronic matter, we study the properties of the pion in dense medium using Skyrme's effective Lagrangian as a unified theory of the hadronic interactions applicable in the large $N_c$ limit. Dense baryonic matter is described as the ground state of a skyrmion matter which appears in two differentiated phases as a function of matter density: i) at high densities as a stable cubic-centered (CC) half-skyrmion crystal; ii) at low densities as an unstable face-centered cubic (FCC) skyrmion crystal. We substitute the latter by a stable inhomogeneous phase of lumps of dense matter, which represents a naive Maxwell construction of the phase trans…