Search results for "Experimental techniques"
showing 10 items of 226 documents
The MORA project
2018
The MORA (Matter's Origin from the RadioActivity of trapped and oriented ions) project aims at measuring with unprecedented precision the D correlation in the nuclear beta decay of trapped and oriented ions. The D correlation offers the possibility to search for new CP-violating interactions, complementary to searches done at the LHC and with Electric Dipole Moments. Technically, MORA uses an innovative in-trap orientation method which combines the high trapping efficiency of a transparent Paul trap with laser orientation techniques. The trapping, detection, and laser setups are under development, for first tests at the Accelerator laboratory, JYFL, in the coming years.
Experiments and Facilities for Accelerator-Based Dark Sector Searches
2022
This paper provides an overview of experiments and facilities for accelerator-based dark matter searches as part of the US Community Study on the Future of Particle Physics (Snowmass 2021). Companion white papers to this paper present the physics drivers: thermal dark matter, visible dark portals, and new flavors and rich dark sectors.
A Silicon Strip Detector for the Phase II High Luminosity Upgrade of the ATLAS Detector at the Large Hadron Collider
2015
202 páginas. Tesis Doctoral del Departamento de Física Atómica, Molecular y Nuclear, de la Universidad de Valencia y del Instituto de Física Corpuscular (IFIC).
Resonance lonization mass spectroscopy with a pulsed thermal atomic beam
1987
Resonance ionization mass spectroscopy (RIMS) and pulsed-laser induced desorption (PLID) have been combined for ultrasensitive detection and spectroscopy of very small samples of refractive elements. The method has been tested and applied to laser spectroscopy of 5×109 atoms (1.5 pg) of195Au (T1/2= 183d) implanted at the ISOLDE online mass separator with 60 keV into graphite. A pulsed thermal atomic beam was formed by laser desorption with a 10 ns Nd∶Yag laser pulse. Subsequently the atoms were photoionized in a three-colour, three-step resonant excitation to an autoionizing state. The selectivity was enhanced by a time-of-flight measurement of the photo ions. In resonance, one ion was dete…
Drift chamber calibration and particle identification in the P-349 experiment
2019
The goal of the P-349 experiment is to test whether 3.5 GeV/c antiprotons produced in high-energy proton-proton collisions are polarized in view of the preparation of a polarized antiproton beam. In this article, we present the details of the ongoing analysis focused on the drift chambers calibration and particle identification with DIRC.
First Capture of Antiprotons in a Penning Trap: A Kiloelectronvolt Source
1986
Antiprotons from the Low Energy Antiproton Ring of CERN are slowed from 21 MeV to below 3 keV by being passed through 3 mm of material, mostly Be. While still in flight, the kiloelectronvolt antiprotons are captured in a Penning trap created by the sudden application of a 3-kV potential. Antiprotons are held for 100 s and more. Prospects are now excellent for much longer trapping times under better vacuum conditions. This demonstrates the feasibility of a greatly improved measurement of the inertial mass of the antiproton and opens the way to other intriguing experiments.
A large Streamer Chamber muon tracking detector in a high-flux fixed-target application.
1999
Arrays of limited streamer tubes of the Iarocci type were deployed in our experiment at CERN as part of a forward muon detector system with provisions for the beam to pass through the center of each panel in the array. A total of 16 4 m x 4 m panels were assembled with inductive readout strips on both sides of each panel. An active feedback system. was deployed to regulate the high voltage to the streamer tubes to insure a constant efficiency for minimum ionizing particles. The arrays were operated in this environment for over five years of data taking. Streamer tube track-reconstruction efficiencies and tube replacement rates are reported. (C) 1999 Elsevier Science B.V. All rights reserved.
Implementation and Performance of the Signal Reconstruction in the ATLAS Hadronic Tile Calorimeter
2012
AbstractThe Tile Calorimeter (TileCal) for the ATLAS experiment at the CERN Large Hadron Collider (LHC) is currently taking data with proton-proton collisions. The Tile Calorimeter is a sampling calorimeter with steel as absorber and scintillators as active medium. The scintillators are read-out by wavelength shifting fibers coupled to photomultiplier tubes (PMT). The analogue signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25ns. The TileCal front-end electronics allows to read-out the signals produced by about 10000 channels measuring energies ranging from ∼30 MeV to ∼2 TeV. The read-out system is designed to reconstruct the data in real-time fulfilli…
The ATLAS TileCal read-out drivers signal reconstruction
2009
TileCal is the hadronic calorimeter of the ATLAS experiment at the LHC collider at CERN. The Read-Out Drivers (ROD) are the core of the off-detector electronics. The main components of the RODs are the Digital Signal Processor (DSP) placed on the Processing Unit (PU) dautherboards. This paper describes the DSP code and its performance with calibration and real data. The code is divided into two different parts: the first part contains the core functionalities and the second one the reconstruction algorithms. The core acts as an operating system and it controls the configuration, the data reception, transmission, online monitoring and the synchronization between front-end data and the Trigge…
ALEPH: a Detector for Electron-Positron Annihilations at LEP
1990
Process-centred Software Engineering Environments (PSEE) are the most recent generation of environments supporting software development activities. Most of PSEE are based on mechanisms promoting enforcement and automation of process activities. In this kind of mechanisms the process models are prescribed in a detailed and complete way. But the experience shows that supporting processes is more concerned with the flexibility of guidance offered during the process performance than with enforcement of a collection of predefined process models. In this paper, we present a solution to support strategic processes in a PSEE by providing a flexible guidance during process enactment.