Search results for "Experimental techniques"

showing 10 items of 226 documents

PERFORMANCE OF THE ALEPH TIME PROJECTION CHAMBER

1991

The performance of the ALEPH Time Projection Chamber (TPC) has been studied using data taken during the LEP running periods in 1989 and 1990. After correction of residual distortions and optimisation of coordinate reconstruction algorithms, single coordinate resolutions of 173-mu-m in the azimuthal and 740-mu-m in the longitudinal direction are achieved. This results in a momentum resolution for the TPC of DELTA-p/p2 = 1.2 x 10(-3) (GeV/c)-1. In combination with the ALEPH Inner Tracking Chamber (ITC), a total momentum resolution of DELTA-p/p2 = 0.8 x 10(-3) (GeV/c)-1 is obtained. With respect to particle identification, the detector achieves a resolution of 4.4% for the measurement of the i…

PhysicsNuclear and High Energy PhysicsTime projection chamberPhysics::Instrumentation and DetectorsTracking (particle physics)Particle identificationParticle detectorMomentumNuclear physicsAzimuthPair productionHigh Energy Physics::ExperimentDetectors and Experimental TechniquesInstrumentationImage resolution
researchProduct

Electron-pion discrimination with a scintillating fiber calorimeter

1990

Abstract We report on an experimental study of a variety of techniques for discriminating between (isolated) electrons and pions in a lead and scintillating fiber calorimeter without longitudinal segmentation. Using information from the lateral shower development, from a pre-shower detector, from the time structure of the signals, or from a combination of these we measure pion rejection factors of up to several thousand while maintaining electron efficiencies of 95% or higher.

PhysicsNuclear and High Energy Physicsintegumentary systemCalorimeter (particle physics)BackscatterScintillating fiberPhysics::Instrumentation and Detectorsbusiness.industryDetectorElectronNuclear physicsOpticsPionHigh Energy Physics::ExperimentTime structureDetectors and Experimental Techniquesbusinesshuman activitiesInstrumentation
researchProduct

The MuPix high voltage monolithic active pixel sensor for the Mu3e experiment

2015

Mu3e is a novel experiment searching for charged lepton flavor violation in the rare decay μ → eee. In order to reduce background by up to 16 orders of magnitude, decay vertex position, decay time and particle momenta have to be measured precisely. A pixel tracker based on 50 μm thin high voltage monolithic active pixel sensors (HV-MAPS) in a magnetic field will deliver precise vertex and momentum information. Test beam results like an excellent efficiency of >99.5% and a time resolution of better than 16.6 ns obtained with the MuPix HV-MAPS chip developed for the Mu3e pixel tracker are presented.

PhysicsParticle physicsCMOS sensorElectronic detector readout concepts (solid-state)PixelPhysics::Instrumentation and Detectorsbusiness.industryHigh voltageChipElectronic detector readout concepts (solid-state); Particle tracking detectors (solidstate detectors)Magnetic fieldVertex (geometry)OpticsHigh Energy Physics::Experimentddc:610Electric potentialDetectors and Experimental TechniquesParticle tracking detectors (solidstate detectors)ddc:620businessInstrumentationParticle Physics - ExperimentMathematical PhysicsEngineering & allied operationsLepton
researchProduct

Topological and Central Trigger Processor for 2014 LHC luminosities

2012

The ATLAS experiment is located at the European Center for Nuclear Research (CERN) in Switzerland. It is designed to observe phenomena that involve highly massive particles produced in the collisions at the Large Hadron Collider (LHC): the world’s largest and highest-energy particle accelerator. Event triggering and Data Acquisition is one of the extraordinary challenges faced by the detectors at the high luminosity LHC collider. During 2011, the LHC reached instantaneous luminosities of 4 10^33 cm−1 s−1 and produced events with up to 24 interactions per colliding proton bunch. This places stringent operational and physical requirements on the ATLAS Trigger in order to reduce the 40MHz coll…

PhysicsParticle physicsLarge Hadron ColliderLuminosity (scattering theory)Physics::Instrumentation and DetectorsATLAS experimentParticle acceleratorlaw.inventionNuclear physicsUpgradelawNuclear electronicsPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentDetectors and Experimental TechniquesNuclear ExperimentColliderEvent (particle physics)
researchProduct

MoEDAL: Seeking magnetic monopoles and more at the LHC

2015

The MoEDAL experiment (Monopole and Exotics Detector at the LHC) is designed to directly search for magnetic monopoles and other highly ionising stable or metastable particles arising in various theoretical scenarios beyond the Standard Model. Its physics goals --largely complementary to the multi-purpose LHC detectors ATLAS and CMS-- are accomplished by the deployment of plastic nuclear track detectors combined with trapping volumes for capturing charged highly ionising particles and TimePix pixel devices for monitoring. This paper focuses on the status of the detectors and the prospects for LHC Run II.

PhysicsParticle physicsLarge Hadron ColliderPhysics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsPhysics beyond the Standard ModelDetectorMagnetic monopoleFOS: Physical sciencesInstrumentation and Detectors (physics.ins-det)High Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenologymedicine.anatomical_structureMoEDAL experimentHigh Energy Physics - Phenomenology (hep-ph)Nuclear trackAtlas (anatomy)medicineDetectors and Experimental Techniques
researchProduct

Upgrade of the ATLAS Level-1 trigger with an FPGA based Topological Processor

2013

The ATLAS experiment is located at the European Centre for Nuclear Research (CERN) in Switzerland. It is designed to measure decay properties of high energetic particles produced in the protons collisions at the Large Hadron Collider (LHC). The LHC has a proton collision at a frequency of 40 MHz, and thus requires a trigger system to efficiently select events down to a manageable event storage rate of about 400Hz. Event triggering is therefore one of the extraordinary challenges faced by the ATLAS detector. The Level-1 Trigger is the first rate-reducing step in the ATLAS Trigger, with an output rate of 75kHz and decision latency of less than 2.5$\mu$s. It is primarily composed of the Calori…

PhysicsParticle physicsLarge Hadron ColliderPhysics::Instrumentation and DetectorsNuclear TheoryATLAS experimentUpgrademedicine.anatomical_structureAtlas (anatomy)Optical receiversmedicinePhysics::Accelerator PhysicsSignal processing algorithmsHigh Energy Physics::ExperimentDetectors and Experimental TechniquesNuclear ExperimentField-programmable gate array
researchProduct

Event plane determination with the new ALICE FIT detector

2021

During the on-going second long shutdown of LHC, the forward detectors of the ALICE experiment are implementing an extensive upgrade. In particular, a new Fast Interaction Trigger (FIT) has been designed and built. It consists of three sub-detector systems delivering a broad range of online functionalities, and an essential input for event characterization and physics analysis. For instance, FIT will deliver the precise collision time for the TOF-based particle identification, provide the centrality and the event plane information, and measure the cross section of diffractive processes. This note will discuss usage of FIT in the event plane determination during Run 3. A simulated event plan…

PhysicsParticle physicsLarge Hadron ColliderPlane (geometry)Physics::Instrumentation and DetectorstutkimuslaitteetDetectorhiukkasfysiikkahiukkaskiihdyttimetMeasure (mathematics)Particle identificationUpgradeilmaisimetNuclear Physics - ExperimentDetectors and Experimental TechniquesCentralityEvent (particle physics)Particle Physics - Experiment
researchProduct

Ultra-stable implanted 83Rb/83mKr electron sources for the energy scale monitoring in the KATRIN experiment

2012

The KATRIN experiment aims at the direct model-independent determination of the average electron neutrino mass via the measurement of the endpoint region of the tritium beta decay spectrum. The electron spectrometer of the MAC-E filter type is used, requiring very high stability of the electric filtering potential. This work proves the feasibility of implanted 83Rb/83mKr calibration electron sources which will be utilised in the additional monitor spectrometer sharing the high voltage with the main spectrometer of KATRIN. The source employs conversion electrons of 83mKr which is continuously generated by 83Rb. The K-32 conversion line (kinetic energy of 17.8 keV, natural line width of 2.7 e…

PhysicsPhysics - Instrumentation and DetectorsElectron spectrometerSpectrometerPhysics::Instrumentation and DetectorsFOS: Physical sciencesHigh voltageElectronInstrumentation and Detectors (physics.ins-det)Inelastic scatteringKinetic energyComputational physicsDetectors and Experimental TechniquesNuclear Experiment (nucl-ex)Nuclear ExperimentInstrumentationElectron neutrinoMathematical PhysicsKATRIN
researchProduct

The optical instrumentation of the ATLAS Tile Calorimeter

2013

The purpose of this Note is to describe the optical assembly procedure called here Optical Instrumentation and the quality tests conducted on the assembled units. Altogether, 65 Barrel (or LB) modules were constructed - including one spare - together with 129 Extended Barrel (EB) modules (including one spare). The LB modules were mechanically assembled at JINR (Dubna, Russia) and transported to CERN, where the optical instrumentation was performed with personnel contributed by several Institutes. The modules composing one of the two Extended Barrels (known as EBA) were mechanically assembled in the USA, and instrumented in two US locations (ANL, U. of Michigan), while the modules of the oth…

PhysicsPhysics::Instrumentation and Detectorsbusiness.industryOptical instrumentationATLAS experimentScintillatorCentral regionCalorimeterNuclear physicsTile calorimeterOpticsmedicine.anatomical_structureAtlas (anatomy)Scintillation countermedicineHigh Energy Physics::ExperimentDetectors and Experimental TechniquesbusinessInstrumentationMathematical Physics
researchProduct

High-voltage monitoring with a solenoid retarding spectrometer at the KATRIN experiment

2014

The KATRIN experiment will measure the absolute mass scale of neutrinos with a sensitivity of m(ν) = 200meV/c(2) by means of an electrostatic spectrometer set close to the tritium β-decay endpoint at 18.6keV. Fluctuations of the energy scale must be under control within ±60mV (±3ppm). Since a precise voltage measurement in the range of tens of kV is on the edge of current technology, a nuclear standard will be deployed additionally. Parallel to the main spectrometer the same retarding potential will be applied to the monitor spectrometer to measure 17.8-keV K-conversion electrons of (83m)Kr. This article describes the setup of the monitor spectrometer and presents its first measurement resu…

PhysicsRange (particle radiation)SpectrometerPhysics::Instrumentation and DetectorsMeasure (physics)High voltageSolenoidNuclear physicsDetectors and Experimental TechniquesNeutrinoInstrumentationMathematical PhysicsKATRINVoltageJournal of Instrumentation
researchProduct