Search results for "F-space"
showing 10 items of 10 documents
Bounded elements of C*-inductive locally convex spaces
2013
The notion of bounded element of C*-inductive locally convex spaces (or C*-inductive partial *-algebras) is introduced and discussed in two ways: The first one takes into account the inductive structure provided by certain families of C*-algebras; the second one is linked to the natural order of these spaces. A particular attention is devoted to the relevant instance provided by the space of continuous linear maps acting in a rigged Hilbert space.
Examples of proper k-ball contractive retractions in F-normed spaces
2007
Abstract Assume X is an infinite dimensional F -normed space and let r be a positive number such that the closed ball B r ( X ) of radius r is properly contained in X . The main aim of this paper is to give examples of regular F -normed ideal spaces in which there is a 1-ball or a ( 1 + e ) -ball contractive retraction of B r ( X ) onto its boundary with positive lower Hausdorff measure of noncompactness. The examples are based on the abstract results of the paper, obtained under suitable hypotheses on X .
The Factorization Method for Electrical Impedance Tomography in the Half-Space
2008
We consider the inverse problem of electrical impedance tomography in a conducting half-space, given electrostatic measurements on its boundary, i.e., a hyperplane. We first provide a rigorous weak analysis of the corresponding forward problem and then develop a numerical algorithm to solve an associated inverse problem. This inverse problem consists of the reconstruction of certain inclusions within the half-space which have a different conductivity than the background. To solve the inverse problem we employ the so-called factorization method of Kirsch, which so far has only been considered for the impedance tomography problem in bounded domains. Our analysis of the forward problem makes u…
Buckling of a coating strip of finite width bonded to elastic half-space
2008
AbstractA solution for buckling of a stiff strip of finite width bonded to a compliant elastic half-space and subjected to uniform axial compression is presented. Approximate semi-analytical and finite element solutions are obtained and compared with a two-dimensional case of a plate on elastic foundation. The comparison demonstrates that the two-dimensional solution can be applied to predict the buckling wavelength and critical compressive strain when the width of the strip is equal to or larger than the buckling wavelength. For narrow strips, the wavelength is smaller and critical strain is higher than that of a plate on foundation.
Well-posedness of the boundary layer equations
2004
We consider the mild solutions of the Prandtl equations on the half space. Requiring analyticity only with respect to the tangential variable, we prove the short time existence and the uniqueness of the solution in the proper function space. Theproof is achieved applying the abstract Cauchy--Kowalewski theorem to the boundary layer equations once the convection-diffusion operator is explicitly inverted. This improves the result of [M. Sammartino and R. E. Caflisch, Comm. Math. Phys., 192 (1998), pp. 433--461], as we do not require analyticity of the data with respect to the normal variable.
Self-similarity and scaling of thermal shock fractures
2013
The problem of crack pattern formation due to thermal shock loading at the surface of half-space is solved numerically using two-dimensional boundary element method. The results of numerical simulations with 100-200 random simultaneously growing and interacting cracks are used to obtain scaling relations for crack length and spacing. The numerical results predict that such process of pattern formation with quasi-static crack growth is not stable and at some point the excess energy leads to unstable propagation of one of the longest crack. The onset of instability has also been determined from numerical results.
Analytic solutions of the Navier-Stokes equations
2001
We consider the time dependent incompressible Navier-Stokes equations on an half plane. For analytic initial data, existence and uniqueness of the solution are proved using the Abstract Cauchy-Kovalevskaya Theorem in Banach spaces. The time interval of existence is proved to be independent of the viscosity.
On the critical curve for systems of hyperbolic inequalities in an exterior domain of the half-space
2023
We establish blow-up results for a system of semilinear hyperbolic inequalities in an exterior domain of the half-space. The considered system is investigated under an inhomogeneous Dirichlet-type boundary condition depending on both time and space variables. In certain cases, an optimal criterium of Fujita-type is derived. Our results yield naturally sharp nonexistence criteria for the corresponding stationary wave system and equation.
Semigenerated Carnot algebras and applications to sub-Riemannian perimeter
2021
This paper contributes to the study of sets of finite intrinsic perimeter in Carnot groups. Our intent is to characterize in which groups the only sets with constant intrinsic normal are the vertical half-spaces. Our viewpoint is algebraic: such a phenomenon happens if and only if the semigroup generated by each horizontal half-space is a vertical half-space. We call semigenerated those Carnot groups with this property. For Carnot groups of nilpotency step 3 we provide a complete characterization of semigeneration in terms of whether such groups do not have any Engel-type quotients. Engel-type groups, which are introduced here, are the minimal (in terms of quotients) counterexamples. In add…
Splines in convex sets under constraints of two‐sided inequality type in a hyperplane
2008
The problem of minimization of a smoothing functional under inequality constraints is considered in a hyperplane. The conditions of the existence of a solution are obtained and some properties of this solution are investigated. It is proved that the solution is a spline. The method for its construction is suggested. First Published Online: 14 Oct 2010