Search results for "FEMTOSECOND"
showing 10 items of 238 documents
Femtosecond pulse compression in a hollow-core photonic bandgap fiber by tuning its cross section
2012
Abstract We present a numerical study of soliton pulse compression in a seven-cell hollow-core photonic bandgap fiber. We analyze the enhancement of both the compression factor and the pulse shape quality of 360 nJ femtosecond pulses at the wavelength of 800 nm by tuning the cross section size of the fiber. We use the generalized non-linear Schrodinger equation in order to modeled the propagation of light pulses along the fiber. Our numerical results show that output compressed pulses can be obtained, in a propagation length of 31 cm, with a compression factor of 5.7 and pulse shape quality of 77% for a reduction of 4.5% of the cross section size of the fiber. The predicted compression fact…
Changes in Pupil Area during Low-energy Femtosecond Laser-assisted Cataract Surgery
2018
Purpose: To study the potential changes in pupil area within low-energy femtosecond-laser assisted cataract surgery (FLACS). Methods: A retrospective assessment of the pupil size was performed in the eyes undergoing FLACS using the Ziemer LDV Z8. We measured the pupil diameters as part of the images taken preoperatively and at the completion of laser pretreatment (after releasing the suction). We calculated the pupil area in 40 eyes of 40 patients (14 right and 26 left eyes). The mean ± standard deviation (SD) of age of the patients was 74 ± 7.4 years (range: 51-87). Paired t-test was used for statistical analyses. Subgroups were built with reference to age and preoperative pupil area (smal…
Interpretation of negative birefringence observed in strong-field optical pump-probe experiments: High-order Kerr and plasma grating effects
2013
The analysis of negative birefringence optically induced in major air components (Loriot et al., [1, 2]) is revisited in light of the recently reported plasma grating-induced phase-shift effect predicted for strong field pump-probe experiments (Wahlstrand and Milchberg, [3]). The nonlinear birefrin- gence induced by a short and intense laser pulse in argon is measured by femtosecond time-resolved polarimetry. The experiments are performed with degenerate colors, where the pump and probe beam share the same spectrum, or with two different colors and non-overlapping spectra. The in- terpretation of the experimental results is substantiated using a numerical 3D+1 model accounting for nonlinear…
Temperature measurement in gas mixtures by femtosecond Raman-induced polarization spectroscopy
2003
European Conference on Nonlinear Optical Spectroscopy (ECONOS) MAR 30-APR 01, 2003 BESANCON, FRANCE; The potential of femtosecond Raman-induced polarization spectroscopy (RIPS) for the simultaneous determination of temperature and concentrations was investigated. These measurements were related to the rotational time response of the molecular gas mixture, which was measured as a function of the pump-probe time delay. The change of the polarizability anisotropy with respect to the vibrational levels was taken into account. The results of temperature measurements in pure CO2 showed good agreement with the values obtained by a thermocouple. The RIPS technique was also applied to a CO2-N2 gas m…
All-fibered high-quality 1.5–2 THz femtosecond pulse sources
2009
Generation of high-quality ultra-high repetition rate optical pulse trains around 1.55µm has become increasingly interesting for many scientific applications such as optical sampling, ultra-high capacity transmission systems, component testing or nonlinear phenomena studies. Unfortunately, the current bandwidth limitations of optoelectronic devices do not enable the direct generation of pulses with repetition rate higher than 80GHz and a temporal width below a few ps.
Towards CEP stable sub two cycle IR pulse compression with bulk material
2010
We demonstrate both experimentally and numerically that self-steepening during propagation in a hollow-fiber followed by linear propagation through glass in the anomalous dispersion enables pulse compression down to 1.9 cycles at 1.8 micron wavelength.
Charge injection and trapping at perovskite interfaces with organic hole transporting materials of different ionization energies
2019
The extraction of photogenerated holes from CH3NH3PbI3 is crucial in perovskite solar cells. Understanding the main parameters that influence this process is essential to design materials and devices with improved efficiency. A series of vacuum deposited hole transporting materials (HTMs) of different ionization energies, used in efficient photovoltaic devices, are studied here by means of femtosecond transient absorption spectroscopy. We find that ultrafast charge injection from the perovskite into the different HTMs (<100 fs) competes with carrier thermalization and occurs independently of their ionization energy. Our results prove that injection takes place from hot states in the valence…
Telecom to mid-infrared supercontinuum generation in a silicon germanium waveguide
2015
We report the first demonstration of broadband supercontinuum generation in silicon-germanium waveguides. Upon propagation of ultra-short femtosecond pulses in a 3-cm-long waveguide, the broadening extended from 1.455µm to 2.788µm (at the −30-dB point).
Achromatic diffraction of femtosecond light pulses
2003
Diffraction of electromagnetic waves in free space is a physical phenomenon that explicitly depends on the wavelength of light radiation. As an ultrashort-pulsed waveform consists of many frequency components that are coherently superposed, diffraction of a femtosecond pulse passing through an aperture radically differs from that under continuous wave (CW) monochromatic illumination. Note that the spectral width of a 5 fs pulsed beam is approximately 400 nm, which roughly corresponds to the entire visible spectrum bandwidth. The spectral distribution of the source results in the chromatic distortion, both lateral and axial, of the optical field diffracted by the aperture. This detrimental e…
Disclosing the emissive surface traps in green-emitting carbon nanodots
2021
Abstract The bright photoluminescence of surface-functionalized carbon nanoparticles, known as carbon nanodots (CDs), has been studied for more than a decade because of its fundamental photo-physical interest and strong technological potential. However, the essential nature of the electronic states involved in their typical light emission remains very elusive. Here, we provide conclusive evidence that surface carboxylic moieties are the key to CD fluorescence. The synergy of nanosecond and femtosecond optical studies, cryogenic fluorescence, computational investigations and chemical engineering of a strategically chosen model CD system, allows to demonstrate that their visible-light transit…