Search results for "FIBONACCI"

showing 10 items of 38 documents

Abelian Repetitions in Sturmian Words

2012

We investigate abelian repetitions in Sturmian words. We exploit a bijection between factors of Sturmian words and subintervals of the unitary segment that allows us to study the periods of abelian repetitions by using classical results of elementary Number Theory. We prove that in any Sturmian word the superior limit of the ratio between the maximal exponent of an abelian repetition of period $m$ and $m$ is a number $\geq\sqrt{5}$, and the equality holds for the Fibonacci infinite word. We further prove that the longest prefix of the Fibonacci infinite word that is an abelian repetition of period $F_j$, $j>1$, has length $F_j(F_{j+1}+F_{j-1} +1)-2$ if $j$ is even or $F_j(F_{j+1}+F_{j-1}…

FOS: Computer and information sciencesFibonacci numberDiscrete Mathematics (cs.DM)Formal Languages and Automata Theory (cs.FL)Computer Science - Formal Languages and Automata TheoryG.2.168R15FOS: MathematicsCombinatorics on words Sturmian wordMathematics - CombinatoricsAbelian groupFibonacci wordMathematicsDiscrete mathematicsMathematics::CombinatoricsSturmian wordCombinatorics on wordsNumber theoryF.2.2; F.4.3; G.2.1F.4.3ExponentCombinatorics (math.CO)F.2.2Word (group theory)Computer Science::Formal Languages and Automata TheoryComputer Science - Discrete Mathematics
researchProduct

Abelian Powers and Repetitions in Sturmian Words

2016

Richomme, Saari and Zamboni (J. Lond. Math. Soc. 83: 79-95, 2011) proved that at every position of a Sturmian word starts an abelian power of exponent $k$ for every $k > 0$. We improve on this result by studying the maximum exponents of abelian powers and abelian repetitions (an abelian repetition is an analogue of a fractional power) in Sturmian words. We give a formula for computing the maximum exponent of an abelian power of abelian period $m$ starting at a given position in any Sturmian word of rotation angle $\alpha$. vAs an analogue of the critical exponent, we introduce the abelian critical exponent $A(s_\alpha)$ of a Sturmian word $s_\alpha$ of angle $\alpha$ as the quantity $A(s_\a…

FOS: Computer and information sciencesFibonacci numberGeneral Computer ScienceDiscrete Mathematics (cs.DM)Formal Languages and Automata Theory (cs.FL)[INFO.INFO-DS]Computer Science [cs]/Data Structures and Algorithms [cs.DS]Computer Science - Formal Languages and Automata Theory0102 computer and information sciences01 natural sciencesTheoretical Computer ScienceCombinatoricsFOS: MathematicsMathematics - Combinatorics[INFO]Computer Science [cs]Number Theory (math.NT)0101 mathematicsAbelian groupContinued fractionFibonacci wordComputingMilieux_MISCELLANEOUSQuotientMathematicsMathematics - Number Theoryta111010102 general mathematicsComputer Science (all)Sturmian wordSturmian wordAbelian period; Abelian power; Critical exponent; Lagrange constant; Sturmian word; Theoretical Computer Science; Computer Science (all)Abelian periodLagrange constantCritical exponentAbelian power010201 computation theory & mathematicsBounded functionExponentCombinatorics (math.CO)Computer Science::Formal Languages and Automata TheoryComputer Science - Discrete Mathematics
researchProduct

Enumeration and Structure of Trapezoidal Words

2013

Trapezoidal words are words having at most $n+1$ distinct factors of length $n$ for every $n\ge 0$. They therefore encompass finite Sturmian words. We give combinatorial characterizations of trapezoidal words and exhibit a formula for their enumeration. We then separate trapezoidal words into two disjoint classes: open and closed. A trapezoidal word is closed if it has a factor that occurs only as a prefix and as a suffix; otherwise it is open. We investigate open and closed trapezoidal words, in relation with their special factors. We prove that Sturmian palindromes are closed trapezoidal words and that a closed trapezoidal word is a Sturmian palindrome if and only if its longest repeated …

FOS: Computer and information sciencesFibonacci numberSpecial factorGeneral Computer ScienceFormal Languages and Automata Theory (cs.FL)Computer Science - Formal Languages and Automata TheoryEnumerative formulaDisjoint sets68R15Theoretical Computer ScienceFOS: MathematicsPalindromeMathematics - CombinatoricsClosed wordsFibonacci wordMathematicsDiscrete mathematicsClosed wordSequenceta111Sturmian wordPrefixCombinatorics on wordsRich wordtrapezoidal wordF.4.3Combinatorics (math.CO)SuffixWord (group theory)Computer Science(all)
researchProduct

Open and Closed Prefixes of Sturmian Words

2013

A word is closed if it contains a proper factor that occurs both as a prefix and as a suffix but does not have internal occurrences, otherwise it is open. We deal with the sequence of open and closed prefixes of Sturmian words and prove that this sequence characterizes every finite or infinite Sturmian word up to isomorphisms of the alphabet. We then characterize the combinatorial structure of the sequence of open and closed prefixes of standard Sturmian words. We prove that every standard Sturmian word, after swapping its first letter, can be written as an infinite product of squares of reversed standard words.

FOS: Computer and information sciencesSequenceFibonacci numberDiscrete Mathematics (cs.DM)Formal Languages and Automata Theory (cs.FL)Sturmian wordStructure (category theory)Sturmian wordInfinite productComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)Computer Science - Formal Languages and Automata Theory68R15CombinatoricsPrefixComputer Science::Discrete MathematicsCombinatorics on words Sturmian wordFOS: MathematicsMathematics - CombinatoricsClosed wordsCombinatorics (math.CO)SuffixWord (group theory)Computer Science::Formal Languages and Automata TheoryMathematicsComputer Science - Discrete Mathematics
researchProduct

Minimal forbidden factors of circular words

2017

Minimal forbidden factors are a useful tool for investigating properties of words and languages. Two factorial languages are distinct if and only if they have different (antifactorial) sets of minimal forbidden factors. There exist algorithms for computing the minimal forbidden factors of a word, as well as of a regular factorial language. Conversely, Crochemore et al. [IPL, 1998] gave an algorithm that, given the trie recognizing a finite antifactorial language $M$, computes a DFA recognizing the language whose set of minimal forbidden factors is $M$. In the same paper, they showed that the obtained DFA is minimal if the input trie recognizes the minimal forbidden factors of a single word.…

FOS: Computer and information sciencesSettore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniGeneral Computer ScienceDiscrete Mathematics (cs.DM)Finite automatonSettore INF/01 - InformaticaFormal Languages and Automata Theory (cs.FL)Factor automatonComputer Science - Formal Languages and Automata TheoryComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)Circular wordFibonacci wordMinimal forbidden factorTheoretical Computer ScienceComputer Science::Formal Languages and Automata TheoryComputer Science - Discrete Mathematics
researchProduct

Generalized Fibonacci Dynamical Systems

2009

In this paper we consider generalizations of dynamical systems that are based on the Fibonacci sequence. We first study stability properties of such systems for both the continuous and discrete–time case. Then, by considering the Kronecker operator, a further class of dynamical systems is introduced whose outputs can be used to define possible generalization of the golden section. Appli- cations of such system may range from realization of digital filters, manufacturing of tissue with fractal property, etc. Properties of sequences generated by these systems are partially considered and has to be further addressed.

Fibonacci dynamical systemSettore ING-INF/04 - Automaticagolden ratio
researchProduct

More restrictive Gray codes for some classes of pattern avoiding permutations

2009

In a recent article [W.M.B. Dukes, M.F. Flanagan, T. Mansour, V. Vajnovszki, Combinatorial Gray codes for classes of pattern avoiding permutations, Theoret. Comput. Sci. 396 (2008) 35-49], Dukes, Flanagan, Mansour and Vajnovszki present Gray codes for several families of pattern avoiding permutations. In their Gray codes two consecutive objects differ in at most four or five positions, which is not optimal. In this paper, we present a unified construction in order to refine their results (or to find other Gray codes). In particular, we obtain more restrictive Gray codes for the two Wilf classes of Catalan permutations of length n; two consecutive objects differ in at most two or three posit…

Fibonacci number010103 numerical & computational mathematics0102 computer and information sciences01 natural sciencesComputer Science ApplicationsTheoretical Computer ScienceCatalan numberCombinatoricsGray codePermutation010201 computation theory & mathematics[MATH.MATH-CO]Mathematics [math]/Combinatorics [math.CO]Signal ProcessingOrder (group theory)0101 mathematicsComputingMilieux_MISCELLANEOUSBinomial coefficientInformation SystemsMathematicsInformation Processing Letters
researchProduct

Minimal change list for Lucas strings and some graph theoretic consequences

2005

AbstractWe give a minimal change list for the set of order p length-n Lucas strings, i.e., the set of length-n binary strings with no p consecutive 1's nor a 1ℓ prefix and a 1m suffix with ℓ+m⩾p. The construction of this list proves also that the order p n-dimensional Lucas cube has a Hamiltonian path if and only if n is not a multiple of p+1, and its second power always has a Hamiltonian path.

Fibonacci numberGeneral Computer ScienceLucas sequenceCube (algebra)Fibonacci and Lucas stringHamiltonian pathTheoretical Computer ScienceCombinatoricsGray codeSet (abstract data type)symbols.namesakesymbolsHamiltonian pathOrder (group theory)Minimal change listSuffixGray codeLucas cubeComputer Science(all)MathematicsTheoretical Computer Science
researchProduct

Modelización de superredes cuánticas con MathematicaQc

2011

[EN] Quantum superlattices are composite aperiodic structures comprised of alternating layers of several semiconductors following the rules of an aperiodic sequence. From a pedagogical point of view, it is easy to obtain the electronic scattering properties of these systems by means of the Transfer Matrix Method (TMM). In this work we present a TMM code developed in Mathematica that allows modeling periodic and aperiodic superlattices for motivating students of quantum physics by using unconventional geometries such as fractals or the Fibonacci sequence.

FibonacciFísica Cuánticalcsh:L7-991Fractallcsh:Education (General)Modelling in Science Education and Learning
researchProduct

Twin axial vortices generated by Fibonacci lenses.

2013

Optical vortex beams, generated by Diffractive Optical Elements (DOEs), are capable of creating optical traps and other multifunctional micromanipulators for very specific tasks in the microscopic scale. Using the Fibonacci sequence, we have discovered a new family of DOEs that inherently behave as bifocal vortex lenses, and where the ratio of the two focal distances approaches the golden mean. The disctintive optical properties of these Fibonacci vortex lenses are experimentally demonstrated. We believe that the versatility and potential scalability of these lenses may allow for new applications in micro and nanophotonics.

Fresnel zoneFibonacci numberDevils vortex-lensesLightNanophotonicsPhysics::OpticsMicroscopic scaleOpticsLight beamScattering RadiationGolden ratioComputer SimulationDiffractive opticsLensesPhysicsOptical vorticesbusiness.industryFractal zone platesEquipment DesignModels TheoreticalAtomic and Molecular Physics and OpticsVortexEquipment Failure AnalysisRefractometryFISICA APLICADAComputer-Aided DesignbusinessOptical vortexDiffractionOptics express
researchProduct