Search results for "FLUID"
showing 10 items of 5513 documents
Advances in Nanoliposomes Production for Ferrous Sulfate Delivery
2020
In this study, a continuous bench scale apparatus based on microfluidic fluid dynamic principles was used in the production of ferrous sulfate-nanoliposomes for pharmaceutical/nutraceutical applications, optimizing their formulation with respect to the products already present on the market. After an evaluation of its fluid dynamic nature, the simil-microfluidic (SMF) apparatus was first used to study the effects of the adopted process parameters on vesicles dimensional features by using ultrasonic energy to enhance liposomes homogenization. Subsequently, iron-nanoliposomes were produced at different weight ratios of ferrous sulfate to the total formulation components (0.06, 0.035, 0.02, an…
Development of microfluidics for sorting of carbon nanotubes
2018
Sorting of carbon nanotubes by their chirality is the current bottleneck in the way to their broad employment based on their exceptional electronic and optical properties. Despite the extensive effort, there is no known method, which would result in really pure chirality ensembles. Previously reported sorting protocols result in enrichment rather than in sorting, alter electronic structure, and suffer from low yield. This is mostly due to the statistical approach, where the nanotubes with mixed chiralities are treated as a set. In this thesis, we propose a new sorting technique based on nanotube-by-nanotube compartmelization, characterization, and sorting in a continuously running droplet-b…
Numerical simulation of fluid-structure interaction between acoustic and elastic waves
2011
On the effects of suitably designed space microstructures in the propagation of waves in time modulated composites
2023
In the one-dimensional case, the amplitude of a pulse that propagates in a homogeneous material whose properties are instantaneously changed in time will undergo an exponential increase due to the interference between the reflected and transmitted pulses generated at each sudden switch. Here, we resolve the issue by designing suitable reciprocal PT-symmetric space-time microstructures so that the interference between the scattered waves is such that the overall amplitude of the wave will be constant in time in each constituent material. Remarkably, for the geometries proposed here, a pulse will propagate with constant amplitude regardless of the impedance between the constituent materials,…
Modelling flow and heat transfer in spacer-filled membrane distillation channels using open source CFD code
2013
Abstract A good understanding of the details of hydrodynamic and heat transport conditions and their impact on temperature polarisation and pressure drops is essential for optimum design of membrane distillation (MD) modules. To this end, the present work reports on initial progress in the development of a tool for 3D simulation of spacer-filled MD channels based on the open source CFD code library OpenFOAM. The paper discusses a number of modelling and implementation aspects including model geometry and computational domain, choice of boundary conditions, and discretisation schemes. The results pertaining to the effect of three different spacer types on the fluid dynamics and heat transfer…
Towards controlling PCDD/F production in a multi-fuel fired BFB boiler using two sulfur addition strategies
2014
Abstract PCDD/F abatement strategies – sulfur pellet addition and peat co-combustion – were tested for a BFB boiler facility utilizing SRF-bark-sludge as fuel. In this paper chemical and physical analyses of electrostatic precipitator (ESP) fly ashes were used to explain the differences in the performance of these strategies. These analyses revealed a difference between the coarse and fine fly ashes collected in the ESP. Chemical analysis of the fine fly ashes revealed high concentration of easily volatilized elements while the SEM micrographs showed that fine ash are composed of clusters of spherical particles, thereby leading to a conclusion that fine ashes were originally in a gas phase …
Tin resonance-ionization schemes for atomic- And nuclear-structure studies
2020
This paper presents high-precision spectroscopic measurements of atomic tin using five different resonance-ionization schemes performed with the collinear resonance-ionization spectroscopy technique. Isotope shifts were measured for the stable tin isotopes from the $5{s}^{2}5{p}^{2}\phantom{\rule{0.28em}{0ex}}^{3}{P}_{0,1,2}$ and ${}^{1}{S}_{0}$ to the $5{s}^{2}5p6s\phantom{\rule{0.28em}{0ex}}^{1}{P}_{1},^{3}{P}_{1,2}$ and $5{s}^{2}5p7s{\phantom{\rule{0.28em}{0ex}}}^{1}{P}_{1}$ atomic levels. The magnetic dipole hyperfine constants ${A}_{\mathrm{hf}}$ have been extracted for six atomic levels with electron angular momentum $Jg0$ from the hyperfine structures of nuclear spin $I=1/2$ tin isot…
Spectroscopy of short-lived radioactive molecules
2020
Molecular spectroscopy offers opportunities for the exploration of the fundamental laws of nature and the search for new particle physics beyond the standard model1–4. Radioactive molecules—in which one or more of the atoms possesses a radioactive nucleus—can contain heavy and deformed nuclei, offering high sensitivity for investigating parity- and time-reversal-violation effects5,6. Radium monofluoride, RaF, is of particular interest because it is predicted to have an electronic structure appropriate for laser cooling6, thus paving the way for its use in high-precision spectroscopic studies. Furthermore, the effects of symmetry-violating nuclear moments are strongly enhanced5,7–9 in molecu…
Supercurrent-induced charge-spin conversion in spin-split superconductors
2018
We study spin-polarized quasiparticle transport in a mesoscopic superconductor with a spin-splitting field in the presence of coflowing supercurrent. In such a system, the nonequilibrium state is characterized by charge, spin, energy, and spin-energy modes. Here we show that in the presence of both spin splitting and supercurrent, all these modes are mutually coupled. As a result, the supercurrent can convert charge imbalance, which in the presence of spin splitting decays on a relatively short scale, to a long-range spin accumulation decaying only via inelastic scattering. This effect enables coherent charge-spin conversion controllable by a magnetic flux, and it can be detected by studyin…
Three-dimensional skyrmions in spin-2 Bose–Einstein condensates
2017
We introduce topologically stable three-dimensional skyrmions in the cyclic and biaxial nematic phases of a spin-2 Bose-Einstein condensate. These skyrmions exhibit exceptionally high mapping degrees resulting from the versatile symmetries of the corresponding order parameters. We show how these structures can be created in existing experimental setups and study their temporal evolution and lifetime by numerically solving the three-dimensional Gross-Pitaevskii equations for realistic parameter values. Although the biaxial nematic and cyclic phases are observed to be unstable against transition towards the ferromagnetic phase, their lifetimes are long enough for the skyrmions to be imprinted…