Search results for "FLUX"
showing 10 items of 1392 documents
An Indication of Anisotropy in Arrival Directions of Ultra-high-energy Cosmic Rays through Comparison to the Flux Pattern of Extragalactic Gamma-Ray …
2018
A new analysis of the dataset from the Pierre Auger Observatory provides evidence for anisotropy in the arrival directions of ultra-high-energy cosmic rays on an intermediate angular scale, which is indicative of excess arrivals from strong, nearby sources. The data consist of 5514 events above 20 EeV with zenith angles up to 80 deg recorded before 2017 April 30. Sky models have been created for two distinct populations of extragalactic gamma-ray emitters: active galactic nuclei from the second catalog of hard Fermi-LAT sources (2FHL) and starburst galaxies from a sample that was examined with Fermi-LAT. Flux-limited samples, which include all types of galaxies from the Swift-BAT and 2MASS …
Multiyear search for a diffuse flux of muon neutrinos with AMANDA-II
2007
A search for TeV - PeV muon neutrinos from unresolved sources was performed on AMANDA-II data collected between 2000 and 2003 with an equivalent livetime of 807 days. This diffuse analysis sought to find an extraterrestrial neutrino flux from sources with non-thermal components. The signal is expected to have a harder spectrum than the atmospheric muon and neutrino backgrounds. Since no excess of events was seen in the data over the expected background, an upper limit of E^{2}\Phi_{90% C.L.} < 7.4 x 10^{-8} GeV cm^{-2} s^{-1} sr^{-1} is placed on the diffuse flux of muon neutrinos with a \Phi \propto E^{-2} spectrum in the energy range 16 TeV to 2.5 PeV. This is currently the most sensitive…
Search for extraterrestrial point sources of high energy neutrinos with AMANDA-II using data collected in 2000-2002
2005
The results of a search for point sources of high energy neutrinos in the northern hemisphere using data collected by AMANDA-II in the years 2000, 2001 and 2002 are presented. In particular, a comparison with the single-year result previously published shows that the sensitivity was improved by a factor of 2.2. The muon neutrino flux upper limits on selected candidate sources, corresponding to an E^{-2} neutrino energy spectrum, are included. Sky grids were used to search for possible excesses above the background of cosmic ray induced atmospheric neutrinos. This search reveals no statistically significant excess for the three years considered.
Erratum to ``Measurement of the atmospheric muon flux with a 4 GeV threshold in the ANTARES neutrino telescope'' [Astroparticle Physics 33 (2) (2010)…
2010
International audience; Not Available
Limits to the muon flux from neutralino annihilations in the Sun with the AMANDA detector
2005
A search for an excess of muon-neutrinos from neutralino annihilations in the Sun has been performed with the AMANDA-II neutrino detector using data collected in 143.7 days of live-time in 2001. No excess over the expected atmospheric neutrino background has been observed. An upper limit at 90% confidence level has been obtained on the annihilation rate of captured neutralinos in the Sun, as well as the corresponding muon flux limit at the Earth, both as functions of the neutralino mass in the range 100 GeV-5000 GeV.
Dark matter, destroyer of worlds: neutrino, thermal, and existential signatures from black holes in the Sun and Earth
2020
Dark matter can be captured by celestial objects and accumulate at their centers, forming a core of dark matter that can collapse to a small black hole, provided that the annihilation rate is small or zero. If the nascent black hole is big enough, it will grow to consume the star or planet. We calculate the rate of dark matter accumulation in the Sun and Earth, and use their continued existence to place novel constraints on high mass asymmetric dark matter interactions. We also identify and detail less destructive signatures: a newly-formed black hole can be small enough to evaporate via Hawking radiation, resulting in an anomalous heat flow emanating from Earth, or in a flux of high-energy…
Canopy directional emissivity: Comparison between models
2005
Land surface temperature plays an important role in many environmental studies, as for example the estimation of heat fluxes and evapotranspiration. In order to obtain accurate values of land surface temperature, atmospheric, emissivity and angular effects should be corrected. This paper focuses on the analysis of the angular variation of canopy emissivity, which is an important variable that has to be known to correct surface radiances and obtain surface temperatures. Emissivity is also involved in the atmospheric corrections since it appears in the reflected downwelling atmospheric term. For this purpose, five different methods for simulating directional canopy emissivity have been analyz…
A 0535+26 in the August/September 2005 outburst observed by RXTE and INTEGRAL
2007
In this Letter we present results from INTEGRAL and RXTE observations of the spectral and timing behavior of the High Mass X-ray Binary A 0535+26 during its August/September 2005 normal (type I) outburst with an average flux F(5-100keV)~400mCrab. The search for cyclotron resonance scattering features (fundamental and harmonic) is one major focus of the paper. Our analysis is based on data from INTEGRAL and RXTE Target of Opportunity Observations performed during the outburst. The pulse period is determined. X-ray pulse profiles in different energy ranges are analyzed. The broad band INTEGRAL and RXTE pulse phase averaged X-ray spectra are studied. The evolution of the fundamental cyclotron …
Predicting the time variation of radio emission from MHD simulations of a flaring T-Tauri star
2020
ABSTRACT We model the time-dependent radio emission from a disc accretion event in a T-Tauri star using 3D, ideal magnetohydrodynamic simulations combined with a gyrosynchrotron emission and radiative transfer model. We predict for the first time, the multifrequency (1–1000 GHz) intensity and circular polarization from a flaring T-Tauri star. A flux tube, connecting the star with its circumstellar disc, is populated with a distribution of non-thermal electrons that is allowed to decay exponentially after a heating event in the disc and the system is allowed to evolve. The energy distribution of the electrons, as well as the non-thermal power-law index and loss rate, are varied to see their …
Gamma-Ray Flares from Mrk421 in 2008 observed with the ARGO-YBJ detector
2010
In 2008 the blazar Markarian 421 entered a very active phase and was one of the brightest sources in the sky at TeV energies, showing frequent flaring episodes. Using the data of ARGO-YBJ, a full coverage air shower detector located at Yangbajing (4300 m a.s.l., Tibet, China), we monitored the source at gamma ray energies E > 0.3 TeV during the whole year. The observed flux was variable, with the strongest flares in March and June, in correlation with X-ray enhanced activity. While during specific episodes the TeV flux could be several times larger than the Crab Nebula one, the average emission from day 41 to 180 was almost twice the Crab level, with an integral flux of (3.6 +-0.6) 10^-1…