Search results for "FORCE"
showing 10 items of 3423 documents
Ten Facets, One Force Field: The GAL19 Force Field for Water–Noble Metal Interfaces
2020
International audience; Understanding the structure of the water/metal interfaces plays an important role in many areas ranging from surface chemistry to environmental processes. The size, required phase-space sampling, and the slow diffusion of molecules at the water/metal interfaces motivate the development of accurate force fields. We develop and parametrize GAL19, a novel force field, to describe the interaction of water with two facets (111 and 100) of five metals (Pt, Pd, Au, Ag, Cu). To increase transferability compared to its predecessor GAL17, the water–metal interaction is described as a sum of pairwise terms. The interaction energy has three contributions: (i) physisorption is de…
The substituent effect of π-electron delocalization in N-methylamino-nitropyridine derivatives: crystal structure and DFT calculations
2020
AbstractThe crystal and molecular structures of 3-(N-methylamino)-2-nitropyridine, 5-(N-methylamino)-2-nitropyridine and 2-(N-methylamino)-5-nitropyridine have been characterized by X-ray diffraction. To perform conformational analysis, the geometries of the compounds as well as their conformers and rotamers were optimized at the B3LYP/6-311++G(3df,3pd) level. The resulting data were used to analyze the π-electron delocalization effect in relation to the methylamino group rotation in ortho-, meta- and para-substitution positions. Quantitative aromaticity indices were calculated based on which we estimated the electronic structures of the analyzed compounds. The substituent effect of the met…
Structural studies of homoisoflavonoids: NMR spectroscopy, X-ray diffraction, and theoretical calculations
2010
Abstract In this article we present a detailed structural investigation for five homoisoflavonoids, molecules important from the pharmacological point of view. For studying the electron distribution as well as its influence on the physicochemical properties, NMR spectroscopy, X-ray diffraction, and theoretical calculations have been used. Nuclear magnetic shieldings obtained by using DFT calculations for optimized molecular geometries are correlated with the experimentally determined chemical shifts. The theoretical data are well in agreement with the experimental values. The single crystal X-ray structures of homoisoflavonoid derivatives 1, 3, and 4 have been solved. The molecular geometri…
A green and efficient method for the synthesis of homodimeric (β-dicarbonyl) arylmethanes and dihydropyridine from dimedone in water
2018
A direct method has been developed for the synthesis of the dihydropyridine ring system by means of Michael reaction. The reaction of dimedone with 1 .0 equiv. of amines in water provides intermediate product, which allowed dihydropyridine derivatives by intramolecular cyclization in various yields. Of particular interest is the use of the water as solvent of reaction and in absence of catalyst. Also these operating conditions protect the environment and economic points of view.Keywords: aqueous synthesis; bioactivity; dihydropyridine; dimedone; green method; selective conditions
Interplay of hydrogen bonding and π–π interactions in the molecular complex of 2,6-lutidine N-oxide and water
2006
Abstract The crystal and molecular structure of 2,6-lutidine N-oxide monohydrate (1) has been determined by X-ray diffraction analysis. Each water molecule is acting as bridging ligand between the N→O moieties of two 2,6-lutidine N-oxide molecules through moderate strong intermolecular hydrogen bonding (O–H⋯O, O⋯O distances are 2.787(2) and 2.832 (2) A) giving rise to a one-dimensional (1D) polymeric helical chain. A two-dimensional (2D) layered network is then formed by self-assembly of 1D helical chains via strong π–π interactions of the aromatic rings (interplanar distances 3.385 A). The molecular structure of 1 is compared with that for the already reported molecular structures of 2-ace…
Sulfur, tin and gold derivatives of 1-(2'-pyridyl)-ortho-carborane, 1-R-2-X-1,2-C2B10H10 (R = 2'-pyridyl, X = SH, SnMe3 or AuPPh3).
2004
Reaction of the lithium salt of 1-(2'-pyridyl)-ortho-carborane, Li[1-R-1,2-C(2)B(10)H(10)](R = 2'-NC(5)H(4)), with sulfur, followed by hydrolysis, gave the mercapto-o-carborane, 1-R-2-SH-1,2-C(2)B(10)H(10) which forms chiral crystals containing helical chains of molecules linked by intermolecular S-H...N hydrogen bonds. The cage C(1)-C(2) and exo C(2)-S bond lengths (1.730(3) and 1.775(2)[Angstrom], respectively) are indicative of exo S=C pi bonding. The tin derivative 1-R-2-SnMe(3)-1,2-C(2)B(10)H(10), prepared from Li[1-R-1,2-C(2)B(10)H(10)] and Me(3)SnCl, crystallises with no significant intermolecular interactions. The pyridyl group lies in the C(1)-C(2)-Sn plane, oriented to minimise th…
Electrostatic complementarity in pseudoreceptor modeling based on drug molecule crystal structures: the case of loxistatin acid (E64c)
2015
After a long history of use as a prototype cysteine protease inhibitor, the crystal structure of loxistatin acid (E64c) is finally determined experimentally using intense synchrotron radiation, providing insight into how the inherent electronic nature of this protease inhibitor molecule determines its biochemical activity. Based on the striking similarity of its intermolecular interactions with those observed in a biological environment, the electrostatic potential of crystalline E64c is used to map the characteristics of a pseudo-enzyme pocket.
Intermolecular and Intramolecular Transamidation Reactions
2006
The amide functional group is resonance stabilised and direct reaction with amines is known to be difficult. Facile amide exchange reactions would enable the synthesis of important new amide based molecules, therefore transamidation reactions represent an important step in this direction. In order to ensure a transamidation reaction takes place, special requirements and conditions are required. According to the different structural characteristics of the carbox-amide group and types of activation, the most relevant examples of this reaction will be reviewed.
The nature of interactions of benzene with CF3I and CF3CH2I
2019
In situ grown crystals of CF3I and CF3CH2I are dominated by I⋯I and F⋯F interactions. Their co-crystals with benzene, (CF3I)2·C6H6 and CF3CH2I·C6H6, contain two completely different sets of intermolecular interactions. (CF3I)2·C6H6 shows a unique halogen-bond type: above-the-bond C–I⋯πC6H6 interactions. CF3CH2I·C6H6 shows above-the-centre C–H⋯πC6H6 interactions. These interactions are electrostatically dominated type II halogen bonds between single halogenoalkane molecules and weaker dispersion dominated interactions between the co-crystal components. The observed preferences for benzene for the two binding partners match with calculated molecular electrostatic potentials.
Structural, photophysical and magnetic properties of transition metal complexes based on the dipicolylamino-chloro-1,2,4,5-tetrazine ligand
2015
International audience; The ligand 3-chloro-6-dipicolylamino-1,2,4,5-tetrazine (Cl-TTZ-dipica) 1, prepared by the direct reaction between 3,6-dichloro-1,2,4,5-tetrazine and di(2-picolyl)-amine, afforded a series of four neutral transition metal complexes formulated as [Cl-TTZ-dipica-MCl2]2, with M = Zn(II), Cd(II), Mn(II) and Co(II), when reacted with the corresponding metal chlorides. The dinuclear structure of the isostructural complexes was disclosed by single crystal X-ray analysis, clearly indicating the formation of [MII–(μ-Cl)2MII] motifs and the involvement of the amino nitrogen atom in semi-coordination with the metal centers, thus leading to distorted octahedral coordination geome…