Search results for "Fault Tolerance"
showing 10 items of 61 documents
BioAnalysis: A Framework for Structural and Functional Robustness Analysis of Metabolic Networks
2010
The main objective of this work is to analyze metabolic networks evolution in terms of their robustness and fault tolerance capabilities. In metabolic networks, errors can be seen as random removal of network nodes, while attacks are high-connectivity-degree node deletion aimed at compromising network activity. This paper proposes a software framework, namely BioAnalysis, used to test the robustness and the fault tolerance capabilities of real metabolic networks, when mutations and node deletions affect the network structure. The performed simulations are related to the central metabolic network of the well-known E. coli single-celled bacterium and involve either hub nodes or non-hub nodes,…
METABOLIC NETWORKS ROBUSTNESS: THEORY, SIMULATIONS AND RESULTS
2011
Metabolic networks are composed of several functional modules, reproducing metabolic pathways and describing the entire cellular metabolism of an organism. In the last decade, an enormous interest has grown for the study of tolerance to errors and attacks in metabolic networks. Studies on their robustness have suggested that metabolic networks are tolerant to errors, but very vulnerable to targeted attacks against highly connected nodes. However, many findings on metabolic networks suggest that the above classification is too simple and imprecise, since hub node attacks can be by-passed if alternative metabolic paths can be exploited. On the contrary, non-hub nodes attacks can affect cell …
Adaptive distributed outlier detection for WSNs.
2014
The paradigm of pervasive computing is gaining more and more attention nowadays, thanks to the possibility of obtaining precise and continuous monitoring. Ease of deployment and adaptivity are typically implemented by adopting autonomous and cooperative sensory devices; however, for such systems to be of any practical use, reliability and fault tolerance must be guaranteed, for instance by detecting corrupted readings amidst the huge amount of gathered sensory data. This paper proposes an adaptive distributed Bayesian approach for detecting outliers in data collected by a wireless sensor network; our algorithm aims at optimizing classification accuracy, time complexity and communication com…
LoneStar RAID
2016
The need for huge storage archives rises with the ever growing creation of data. With today’s big data and data analytics applications, some of these huge archives become active in the sense that all stored data can be accessed at any time. Running and evolving these archives is a constant tradeoff between performance, capacity, and price. We present the LoneStar RAID, a disk-based storage architecture, which focuses on high reliability, low energy consumption, and cheap reads. It is designed for MAID systems with up to hundreds of disk drives per server and is optimized for “write once, read sometimes” workloads. We use dedicated data and parity disks, and export the data disks as individu…
Comprehensive Modeling and Experimental Testing of Fault Detection and Management of a Nonredundant Fault-Tolerant VSI
2015
This paper presents an investigation and a comprehensive analysis on fault operations in a conventional three-phase voltage source inverter. After an introductory section dealing with power converter reliability and fault analysis issues in power electronics, a generalized switching function accounting for both healthy and faulty conditions and an easy and feasible method to embed fault diagnosis and reconfiguration within the control algorithm are introduced. The proposed system has simple and compact implementation. Experimental results operating both at open- and closed-loop current control, obtained using a test bench realized using a dSPACE system and the fault-tolerant inverter protot…
Secure, dependable and publicly verifiable distributed data storage in unattended wireless sensor networks
2010
Published version of an article from the journal : Science in China, Series F: Information Sciences. The original publication is available at Spingerlink. http://dx.doi.org/10.1007/s11432-010-0096-7 In unattended wireless sensor networks (UWSNs), sensed data are stored locally or at designated nodes and further accessed by authorized collectors on demand. This paradigm is motivated by certain scenarios where historical or digest data (e.g., average temperature in a day), instead of real-time data, are of interest. The data are not instantly forwarded to a central sink upon sensing, thereby saving communication energy for transmission. Such a paradigm can also improve data survivability by m…
Active-passive control strategy for adjacent buildings
2011
Author's version of a chapter in the book: 2011 Proceedings of the American Control Conference. Also available from the publisher at: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=05991059 In this paper, a control strategy to mitigate the vibrational response of adjacent buildings under seismic excitation is presented. The proposed strategy combines inter-building passive actuators with active actuators placed in the building stories. The main ideas are presented by means of a simplified two-building model; however, a semi-decentralized overlapping approach via the inclusion principle has been used to impose a proper information exchange structure suitable for wireless control of larg…
A VLSI for deskewing and fault tolerance in LVDS links
2005
The device presented at this work is a switch implemented in a 0.35 mum CMOS process for compensating the skew which affects parallel data signal transmissions and for providing fault tolerance in large scale scalable systems, for instance used in trigger farms for high energy physics experiments. The SWIFT chip (SWItch for Fault Tolerance) is part of a cluster built around commercially components which has been inspired by the LHCb experiment. The skew is extremely important because it directly affects the sample window available to the receiver logic and either forces to use quality and expensive cables in order to minimize its effects or reduces the maximum signal transmission range or d…
Data Mining for the Security of Cyber Physical Systems Using Deep-Learning Methods
2022
Cyber Physical Systems (CPSs) have become widely popular in recent years, and their applicability have been growing exponentially. A CPS is an advanced system that incorporates a computation unit along with a hardware unit, allowing for computing processes to interact with the physical world. However, this increased usage has also led to the security concerns in them, as they allow potential attack vendors to exploit the possibilities of committing misconduct for their own benefit. It is of paramount importance that these systems have comprehensive security mechanisms to mitigate these security threats. A typical attack vector for a CPS is malicious data supplied by compromised sensors that…
Reliability Analysis of Three Homogeneous Fault-tolerant Inverter Topologies
2016
Abstract—In this article, non-redundant fault-tolerant inverter topologies are addressed. A novel fault-tolerant control strategy which enhances performances during post-fault operation is proposed. Benefits from the proposed strategy over conventional fault-tolerant topologies are investigated in terms of system reliability. Cost, post-fault performances, and system reliability of the proposed solution are compared with both a conventional triac-based fault-tolerant inverter and a T-type inverter. The reliability analysis of each selected configuration is carried out by means of Markov chains. The analysis is validated through a comparison of reliability and sensitivity curves. As shown by…