Search results for "Fault"
showing 10 items of 610 documents
Fault Detection of Networked Control Systems Based on Sliding Mode Observer
2013
Published version of an article in the journal: Mathematical Problems in Engineering. Also availeble from the publisher at: http://dx.doi.org/10.1155/2013/506217 Open Access This paper is concerned with the network-based fault detection problem for a class of nonlinear discrete-time networked control systems with multiple communication delays and bounded disturbances. First, a sliding mode based nonlinear discrete observer is proposed. Then the sufficient conditions of sliding motion asymptotical stability are derived by means of the linear matrix inequality (LMI) approach on a designed surface. Then a discrete-time sliding-mode fault observer is designed that is capable of guaranteeing the…
Fault Tolerant Ancillary Function of Power Converters in Distributed Generation Power System within a Microgrid Structure
2013
Distributed generation (DG) is deeply changing the existing distribution networks which become very sophisticated and complex incorporating both active and passive equipment. The simplification of their management can be obtained assuming a structure with small networks, namely, microgrids, reproducing, in a smaller scale, the structure of large networks including production, transmission, and distribution of the electrical energy. Power converters in distributed generation systems carry on some different ancillary functions as, for example, grid synchronization, islanding detection, fault ride through, and so on. In view of an optimal utilization of the generated electrical power, fault to…
Robust Redundant Input Reliable Tracking Control for Omnidirectional Rehabilitative Training Walker
2014
Published version of an article in the journal: Mathematical Problems in Engineering. Also available from the publisher at: http://dx.doi.org/10.1155/2014/636934 The problem of robust reliable tracking control on the omnidirectional rehabilitative training walker is examined. The new nonlinear redundant input method is proposed when one wheel actuator fault occurs. The aim of the study is to design an asymptotically stable controller that can guarantee the safety of the user and ensure tracking on a training path planned by a physical therapist. The redundant degrees of freedom safety control and the asymptotically zero state detectable concept of the walker are presented, the model of redu…
Adaptive Finite-Time Control for a Flexible Hypersonic Vehicle with Actuator Fault
2013
The problem of robust fault-tolerant tracking control is investigated. Simulation on the longitudinal model of a flexible air-breathing hypersonic vehicle (FAHV) with actuator faults and uncertainties is conducted. In order to guarantee that the velocity and altitude track their desired commands in finite time with the partial loss of actuator effectiveness, an adaptive fault-tolerant control strategy is presented based on practical finite-time sliding mode method. The adaptive update laws are used to estimate the upper bound of uncertainties and the minimum value of actuator efficiency factor. Finally, simulation results show that the proposed control strategy is effective in rejecting unc…
New Procedures of Pattern Classification for Vibration-Based Diagnostics via Neural Network
2014
In this paper, the new distance-based embedding procedures of pattern classification for vibration-based diagnostics of gas turbine engines via neural network are proposed. Diagnostics of gas turbine engines is important because of the high cost of engine failure and the possible loss of human life. Engine monitoring is performed using either ‘on-line’ systems, mounted within the aircraft, that perform analysis of engine data during flight, or ‘off-line’ ground-based systems, to which engine data is downloaded from the aircraft at the end of a flight. Typically, the health of a rotating system such as a gas turbine is manifested by its vibration level. Efficiency of gas turbine monitoring s…
Application of Neural Networks and Expert Systems in a hierarchical approach to the intelligent greenhouse control
2003
A novelty methodology based on the hierarchical combination of neural networks and expert systems is proposed in a centralized approach for the intelligent greenhouse control. The knowledge-based system is in charge of carrying out the determination of PH land value, composition, carbonic anhydride artificial atmosphere, external and internal temperature, wind and humidity measurements. From the results obtained, and by means of a neural network developed and trained for this application, the land quality is evaluated. On the other hand, the expert system, apart from supervising the system function and implementing fault tolerance mechanisms, performs the opportune actions in function of th…
Towards online bearing fault detection using envelope analysis of vibration signal and decision tree classification algorithm
2017
Online bearing fault detection is an important method for monitoring the health status of bearings in critical machines. This work proposes a classification algorithm, which can be extended towards an online bearing fault detection. The objective is to detect and classify the bearing faults in early stages. The overall design aspects of the online bearing fault detection and classification system are discussed. The proposed method is validated using experimental data, and a high accuracy of the fault classification was observed. Therefore, the proposed method can be applied for an online early fault detection and classification system.
Analysis of ground fault current distribution along nonuniform multi-section lines
2008
In case of a substation supplied by a combined overhead-cable line, most of the ground fault current flows through the cable sheaths and discharges into the soil surrounding the point of discontinuity, where cables are connected to the overhead line. In the paper a new method is presented for computing the ground fault current distribution in case of feeding line consisting of two or more different sections, i.e. part overhead and part underground cable. Besides the calculation of the earth current at the fault location, the leakage current at the transit/transition stations as well as at the overhead line towers can be evaluated, in order to ensure proper safety conditions. Based on the tw…
Experimental validation of a general model for three phase inverters operating in healthy and faulty modes
2012
The paper presents the experimental verification of a general mathematical model of Voltage Source Inverters (VSI) able to simulate fault conditions and which is also useful for the simulation of fault-tolerant systems for different applications. In general, in the past, the problem of faulty inverters modeling has been addressed specifically by considering faults on the different phases as separate cases. Furthermore, traditional models include only the faulty mode and not the healthy mode, so resulting then not able to predict transient phenomena. The model hereafter presented overcomes this drawback. It was formulated by introducing the concept of “healthy leg binary variables”. Such var…
Applications of the Fault Decoupling Device to Improve the Operation of LV Distribution Networks
2008
The aim of this paper is to present the operating principle of a new resonant device, called the fault decoupling device (FDD), able to improve power quality in electrical distribution systems. In low-voltage networks, this device can be employed in order to mitigate voltage dips due to faults or large induction motor startup. Moreover, in the presence of distributed-generation (DG) units, the FDD allows one to obtain various benefits such as a reduction of the fault current in each node of the network and an increase in the voltage at the DG unit node. In order to show the performances of the FDD, analytical studies and computer simulations were carried out which took into account various …