Search results for "Feature extraction"
showing 10 items of 275 documents
Studies on the Effectiveness of Multispectral Images for Face Recognition: Comparative Studies and New Approaches
2013
In this paper, we investigate face recognition in unconstrained illumination conditions. A twofold contribution is proposed: First, three state of the art algorithms, namely Multiblock Local Binary Pattern (MBLBP), Histogram of Gabor Phase Patterns (HGPP) and Local Gabor Binary Pattern Histogram Sequence (LGBPHS) are challenged against the IRIS-M3 multispectral face data base to evaluate their robustness against high illumination variation. Second, we propose to enhance the Performance of the three mentioned algorithms, which has been drastically decreased because of the non-monotonic illumination variation that distinguishes the IRIS-M3 face database. Instead of the usual braod band images…
Periodic Variance Maximization using Generalized Eigenvalue Decomposition applied to Remote Photoplethysmography estimation
2018
International audience; A generic periodic variance maximization algorithm to extract periodic or quasi-periodic signals of unknown periods embedded into multi-channel temporal signal recordings is described in this paper. The algorithm combines the notion of maximizing a periodicity metric combined with the global optimization scheme to estimate the source periodic signal of an unknown period. The periodicity maximization is performed using Generalized Eigenvalue Decomposition (GEVD) and the global optimization is performed using tabu search. A case study of remote photoplethysmography signal estimation has been utilized to assess the performance of the method using videos from public data…
Student Performance Prediction Based on Blended Learning
2021
Contribution: This article explored blended learning by implementing a student-centered teaching method based on the flipped classroom and small private online course (SPOC). The impact of general online learning behavior on student performance was analyzed. This work is practical and provides enlightenment for learning analysis and individualized teaching in blended learning. Background: Providing individualized teaching in a large class is an effective way to improve teaching quality, but the traditional teaching method makes it difficult for teachers to learn about each student’s learning situation. Blended learning offers the possibility of individualized teaching for teachers. The comb…
Detection and classification of microcalcifications clusters in digitized mammograms
2005
In the present paper we discuss a new approach for the detection of microcalcification clusters, based on neural networks and developed as part of the MAGIC-5 project, an INFN-funded program which aims at the development and implementation of CAD algorithms in a GRID-based distributed environment. The proposed approach has as its roots the desire to maximize the rejection of background during the analytical pre-processing stage, in order to train and test the neural network with as clean as possible a sample and therefore maximize its performance. The algorithm is composed of three modules: the image pre-processing, the feature extraction component and the Backpropagation Neural Network mod…
Optimized spatio-temporal descriptors for real-time fall detection: comparison of support vector machine and Adaboost-based classification
2013
We propose a supervised approach to detect falls in a home environment using an optimized descriptor adapted to real-time tasks. We introduce a realistic dataset of 222 videos, a new metric allowing evaluation of fall detection performance in a video stream, and an automatically optimized set of spatio-temporal descriptors which fed a supervised classifier. We build the initial spatio-temporal descriptor named STHF using several combinations of transformations of geometrical features (height and width of human body bounding box, the user’s trajectory with her/his orientation, projection histograms, and moments of orders 0, 1, and 2). We study the combinations of usual transformations of the…
Cloud-screening algorithm for ENVISAT/MERIS multispectral images
2007
This paper presents a methodology for cloud screening of multispectral images acquired with the Medium Resolution Imaging Spectrometer (MERIS) instrument on-board the Environmental Satellite (ENVISAT). The method yields both a discrete cloud mask and a cloud-abundance product from MERIS level-lb data on a per-pixel basis. The cloud-screening method relies on the extraction of meaningful physical features (e.g., brightness and whiteness), which are combined with atmospheric-absorption features at specific MERIS-band locations (oxygen and watervapor absorptions) to increase the cloud-detection accuracy. All these features are inputs to an unsupervised classification algorithm; the cloud-proba…
Classification based on Iterative Object Symmetry Transform
2004
The paper shows an application of a new operator named the iterated object transform (IOT) for cell classification. The IOT has the ability to grasp the internal structure of a digital object and this feature can be usefully applied to discriminate structured images. This is the case of cells representing chondrocytes in bone tissue, giarda protozoan, and myeloid leukaemia. A tree classifier allows us to discriminate the three classes with a good accuracy.
Finding essential features for tracking starfish in a video sequence
2004
The paper introduces a software system for detecting and tracking starfish in an underwater video sequence. The target of such a system is to help biologists in giving an estimate of the number of starfish present in a particular area of the sea-bottom. The nature of the input images is characterised by a low signal/noise ratio and by the presence of noisy background represented by pebbles; this makes the detection a non-trivial task. The procedure we use is a chain of several steps that starts from the extraction of the area of interest and ends with a classifier and a tracker providing the necessary information for counting the starfish present in the scene. © 2003 IEEE.
An improved MSD-based method for PD defects classification
2006
The new proposed method of pattern recognition is based on the application of Multi-resolution Signal Decomposition (MSD) technique of wavelet transform. This technique has showed off interesting properties in capturing the embedded horizontal, vertical and diagonal variations within an image obtained from the PD pattern in a separable form. This feature was exploited to identify in the PD pattern's MSD, relative at various family of partial discharge sources, some detail images typical of a single discharge phenomenon. The classification of a generic PD phenomenon is feasible through a comparison between its detail images and the detail images typical of a single discharge phenomenon. Test…
Shape-Based Features for Cat Ganglion Retinal Cells Classification
2002
This article presents a quantitative and objective approach to cat ganglion cell characterization and classification. The combination of several biologically relevant features such as diameter, eccentricity, fractal dimension, influence histogram, influence area, convex hull area, and convex hull diameter are derived from geometrical transforms and then processed by three different clustering methods (Ward’s hierarchical scheme, K-means and genetic algorithm), whose results are then combined by a voting strategy. These experiments indicate the superiority of some features and also suggest some possible biological implications.