Search results for "Feature vector"

showing 10 items of 77 documents

Food tray sealing fault detection using hyperspectral imaging and PCANet

2020

Abstract Food trays are very common in shops and supermarkets. Fresh food packaged in trays must be correctly sealed to protect the internal atmosphere and avoid contamination or deterioration. Due to the speed of production, it is not possible to have human quality inspection. Thus, automatic fault detection is a must to reach high production volume. This work describes a deep neural network based on Principal Component Analysis Network (PCANet) for food tray sealing fault detection. The input data come from hyperspectral cameras, showing more characteristics than regular industrial cameras or the human eye as they capture the spectral properties for each pixel. The proposed classification…

0209 industrial biotechnologyPixelbusiness.industryComputer scienceFeature vectorIndústria agroalimentària020208 electrical & electronic engineeringHyperspectral imagingPattern recognition02 engineering and technologyAliments ConservacióFilter bankFault detection and isolationControl de qualitatSupport vector machine020901 industrial engineering & automationTrayControl and Systems EngineeringPrincipal component analysis0202 electrical engineering electronic engineering information engineeringArtificial intelligencebusiness
researchProduct

ActRec: A Wi-Fi-Based Human Activity Recognition System

2020

In this paper, we develop a Wi-Fi-based activity recognition system called ActRec, which can be used for the remote monitoring of elderly. ActRec comprises two parts: radio-frequency (RF) sensing and machine learning. In the RF sensing part, two laptops act as transmitter and receiver to record the channel transfer function of an indoor environment. This RF data is collected in the presence of seven human participants performing three activities: walking, falling, and sitting. The RF data containing the fingerprints of user activity is then pre-processed with various signal processing algorithms to reduce noise effects and to estimate the mean Doppler shift (MDS) of each data sample. We pro…

Activity recognitionNaive Bayes classifierStatistical classificationComputer sciencebusiness.industryFeature vectorDecision treePattern recognitionArtificial intelligencebusiness2020 IEEE International Conference on Communications Workshops (ICC Workshops)
researchProduct

Adaptive Kernel Learning for Signal Processing

2018

Adaptive filtering is a central topic in digital signal processing (DSP). By applying linear adaptive filtering principles in the kernel feature space, powerful nonlinear adaptive filtering algorithms can be obtained. This chapter introduces the wide topic of adaptive signal processing, and explores the emerging field of kernel adaptive filtering (KAF). In many signal processing applications, the problem of signal estimation is addressed. Probabilistic models have proven to be very useful in this context. The chapter discusses two families of kernel adaptive filters, namely kernel least mean squares (KLMS) and kernel recursive least‐squares (KRLS) algorithms. In order to design a practical …

Adaptive filterLeast mean squares filterSignal processingbusiness.industryComputer scienceKernel (statistics)Feature vectorProbabilistic logicContext (language use)businessAlgorithmDigital signal processing
researchProduct

Adaptive Mid-Term Representations for Robust Audio Event Classification

2018

Low-level audio features are commonly used in many audio analysis tasks, such as audio scene classification or acoustic event detection. Due to the variable length of audio signals, it is a common approach to create fixed-length feature vectors consisting of a set of statistics that summarize the temporal variability of such short-term features. To avoid the loss of temporal information, the audio event can be divided into a set of mid-term segments or texture windows. However, such an approach requires to estimate accurately the onset and offset times of the audio events in order to obtain a robust mid-term statistical description of their temporal evolution. This paper proposes the use of…

Audio signalAcoustics and UltrasonicsComputer sciencebusiness.industryFeature vectorPattern recognition01 natural sciences030507 speech-language pathology & audiology03 medical and health sciencesComputational MathematicsNonlinear systemFraming (construction)Acoustic event detection0103 physical sciencesAudio analyzerComputer Science (miscellaneous)SegmentationArtificial intelligenceElectrical and Electronic Engineering0305 other medical sciencebusiness010301 acousticsTemporal informationIEEE/ACM Transactions on Audio, Speech, and Language Processing
researchProduct

Local Directional Multi Radius Binary Pattern

2018

Face recognition becomes an important task performed routinely in our daily lives. This application is encouraged by the wide availability of powerful and low-cost desktop and embedded computing systems, while the need comes from the integration in too much real world systems including biometric authentication, surveillance, human-computer interaction, and multimedia management. This article proposes a new variant of LBP descriptor referred as Local Directional Multi Radius Binary Pattern (LDMRBP) as a robust and effective face descriptor. The proposed LDMRBP operator is built using new neighborhood topology and new pattern encoding scheme. The adopted face recognition system consists of th…

BiometricsContextual image classificationbusiness.industryComputer scienceFeature vectorFeature extractionComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION020206 networking & telecommunicationsPattern recognition02 engineering and technologyBinary patternFacial recognition systemComputingMethodologies_PATTERNRECOGNITIONHistogram0202 electrical engineering electronic engineering information engineering020201 artificial intelligence & image processingArtificial intelligencebusinessFace detection
researchProduct

Processing of rock core microtomography images: Using seven different machine learning algorithms

2016

The abilities of machine learning algorithms to process X-ray microtomographic rock images were determined. The study focused on the use of unsupervised, supervised, and ensemble clustering techniques, to segment X-ray computer microtomography rock images and to estimate the pore spaces and pore size diameters in the rocks. The unsupervised k-means technique gave the fastest processing time and the supervised least squares support vector machine technique gave the slowest processing time. Multiphase assemblages of solid phases (minerals and finely grained minerals) and the pore phase were found on visual inspection of the images. In general, the accuracy in terms of porosity values and pore…

Boosting (machine learning)010504 meteorology & atmospheric sciencesComputer performanceComputer sciencebusiness.industryFeature vectorPattern recognition010502 geochemistry & geophysics01 natural sciencesFuzzy logicSupport vector machineComputingMethodologies_PATTERNRECOGNITIONLeast squares support vector machineArtificial intelligenceComputers in Earth SciencesCluster analysisPorositybusiness0105 earth and related environmental sciencesInformation SystemsComputers & Geosciences
researchProduct

Learning Improved Feature Rankings through Decremental Input Pruning for Support Vector Based Drug Activity Prediction

2010

The use of certain machine learning and pattern recognition tools for automated pharmacological drug design has been recently introduced. Different families of learning algorithms and Support Vector Machines in particular have been applied to the task of associating observed chemical properties and pharmacological activities to certain kinds of representations of the candidate compounds. The purpose of this work, is to select an appropriate feature ordering from a large set of molecular descriptors usually used in the domain of Drug Activity Characterization. To this end, a new input pruning method is introduced and assessed with respect to commonly used feature ranking algorithms.

Computer scienceActive learning (machine learning)business.industryFeature vectorPattern recognitionMachine learningcomputer.software_genreKernel methodComputational learning theoryRanking SVMFeature (machine learning)Artificial intelligencePruning (decision trees)businessFeature learningcomputer
researchProduct

Least-squares community extraction in feature-rich networks using similarity data

2021

We explore a doubly-greedy approach to the issue of community detection in feature-rich networks. According to this approach, both the network and feature data are straightforwardly recovered from the underlying unknown non-overlapping communities, supplied with a center in the feature space and intensity weight(s) over the network each. Our least-squares additive criterion allows us to search for communities one-by-one and to find each community by adding entities one by one. A focus of this paper is that the feature-space data part is converted into a similarity matrix format. The similarity/link values can be used in either of two modes: (a) as measured in the same scale so that one may …

Computer scienceEconomicsKernel FunctionsSocial Sciences02 engineering and technologyLeast squaresInfographicsTranslocation GeneticGeographical LocationsMedical Conditions0202 electrical engineering electronic engineering information engineeringMedicine and Health SciencesPsychologyCluster AnalysisOperator TheoryData ManagementMultidisciplinaryApplied MathematicsSimulation and ModelingQRExperimental PsychologyEuropeFeature (computer vision)Research DesignPhysical SciencesMedicine020201 artificial intelligence & image processingGraphsAlgorithmsNetwork AnalysisNetwork analysisResearch ArticleComputer and Information SciencesScienceFeature vectorScale (descriptive set theory)Research and Analysis MethodsColumn (database)Similarity (network science)020204 information systemsParasitic DiseasesLeast-Squares AnalysisFeature databusiness.industryData VisualizationBiology and Life SciencesPattern recognitionTropical DiseasesEconomic AnalysisMalariaPeople and PlacesArtificial intelligencebusinessMathematicsPLoS ONE
researchProduct

Efficient Multi-scale Patch-Based Segmentation

2015

The objective of this paper is to devise an efficient and accurate patch-based method for image segmentation. The method presented in this paper builds on the work of Wu et al. [14] with the introduction of a compact multi-scale feature representation and heuristics to speed up the process. A smaller patch representation along with hierarchical pruning allowed the inclusion of more prior knowledge, resulting in a more accurate segmentation. We also propose an intuitive way of optimizing the search strategy to find similar voxel, making the method computationally efficient. An additional approach at improving the speed was explored with the integration of our method with Optimised PatchMatch…

Computer scienceFeature (computer vision)Segmentation-based object categorizationbusiness.industryFeature vectorScale-space segmentationPattern recognitionSegmentationPruning (decision trees)Image segmentationArtificial intelligencebusinessHeuristics
researchProduct

Kernel-Based Framework for Multitemporal and Multisource Remote Sensing Data Classification and Change Detection

2008

The multitemporal classification of remote sensing images is a challenging problem, in which the efficient combination of different sources of information (e.g., temporal, contextual, or multisensor) can improve the results. In this paper, we present a general framework based on kernel methods for the integration of heterogeneous sources of information. Using the theoretical principles in this framework, three main contributions are presented. First, a novel family of kernel-based methods for multitemporal classification of remote sensing images is presented. The second contribution is the development of nonlinear kernel classifiers for the well-known difference and ratioing change detectio…

Computer scienceFeature vectorData classificationcomputer.software_genreKernel (linear algebra)Composite kernelMultitemporal classificationElectrical and Electronic EngineeringSupport vector domain description (SVDD)Remote sensingTelecomunicacionesSupport vector machinesContextual image classificationbusiness.industryKernel methodsPattern recognitionSupport vector machineKernel methodKernel (image processing)Change detectionGeneral Earth and Planetary Sciences3325 Tecnología de las TelecomunicacionesArtificial intelligenceData miningInformation fusionbusinessMultisourcecomputerChange detectionIEEE Transactions on Geoscience and Remote Sensing
researchProduct