Search results for "Feature vector"
showing 10 items of 77 documents
Decision Committee Learning with Dynamic Integration of Classifiers
2000
Decision committee learning has demonstrated spectacular success in reducing classification error from learned classifiers. These techniques develop a classifier in the form of a committee of subsidiary classifiers. The combination of outputs is usually performed by majority vote. Voting, however, has a shortcoming. It is unable to take into account local expertise. When a new instance is difficult to classify, then the average classifier will give a wrong prediction, and the majority vote will more probably result in a wrong prediction. Instead of voting, dynamic integration of classifiers can be used, which is based on the assumption that each committee member is best inside certain subar…
IOWA Operators and Its Application to Image Retrieval
2014
This paper presents a relevance feedback procedure based on logistic regression analysis. Since, the dimension of the feature vector associated to each image is typically larger than the number of evaluated images by the user, different logistic regression models have to be fitted separately. Each fitted model provides us with a relevance probability and a confidence interval for that probability. In order to aggregate these set of probabilities and confidence intervals we use an IOWA operator. The results will show the success of our algorithm and that OWA operators are an efficient and natural way of dealing with this kind of fusion problems.
A support vector domain method for change detection in multitemporal images
2010
This paper formulates the problem of distinguishing changed from unchanged pixels in multitemporal remote sensing images as a minimum enclosing ball (MEB) problem with changed pixels as target class. The definition of the sphere-shaped decision boundary with minimal volume that embraces changed pixels is approached in the context of the support vector formalism adopting a support vector domain description (SVDD) one-class classifier. SVDD maps the data into a high dimensional feature space where the spherical support of the high dimensional distribution of changed pixels is computed. Unlike the standard SVDD, the proposed formulation of the SVDD uses both target and outlier samples for defi…
A Clustering Approach to texture Classification
1988
In the paper a clustering technique to segment an image in to “homogeneous” regions is studied. The homogeneity of each region is evaluated by means of a “proximity function” computed between the pixels. The main result of such approach is that no-histogramming is required in order to perform segmentation. Possibilistic and probabilistic approaches are, also, combined to evaluate the significativity of the computed regions.
A Comparative Study on Feature Selection for Retinal Vessel Segmentation Using FABC
2009
This paper presents a comparative study on five feature selection heuristics applied to a retinal image database called DRIVE. Features are chosen from a feature vector (encoding local information, but as well information from structures and shapes available in the image) constructed for each pixel in the field of view (FOV) of the image. After selecting the most discriminatory features, an AdaBoost classifier is applied for training. The results of classifications are used to compare the effectiveness of the five feature selection methods.
Distributed learning automata-based scheme for classification using novel pursuit scheme
2020
Learning Automata (LA) is a popular decision making mechanism to “determine the optimal action out of a set of allowable actions” (Agache and Oommen, IEEE Trans Syst Man Cybern-Part B Cybern 2002(6): 738–749, 2002). The distinguishing characteristic of automata-based learning is that the search for the optimising parameter vector is conducted in the space of probability distributions defined over the parameter space, rather than in the parameter space itself (Thathachar and Sastry, IEEE Trans Syst Man Cybern-Part B Cybern 32(6): 711–722, 2002). Recently, Goodwin and Yazidi pioneered the use of Ant Colony Optimisation (ACO) for solving classification problems (Goodwin and Yazidi 2016). In th…
Principal polynomial analysis for remote sensing data processing
2011
Inspired by the concept of Principal Curves, in this paper, we define Principal Polynomials as a non-linear generalization of Principal Components to overcome the conditional mean independence restriction of PCA. Principal Polynomials deform the straight Principal Components by minimizing the regression error (or variance) in the corresponding orthogonal subspaces. We propose to use a projection on a series of these polynomials to set a new nonlinear data representation: the Principal Polynomial Analysis (PPA). We prove that the dimensionality reduction error in PPA is always lower than in PCA. Lower truncation error and increased independence suggest that unsupervised PPA features can be b…
A hybrid multi-objective optimization algorithm for content based image retrieval
2013
Abstract Relevance feedback methods in CBIR (Content Based Image Retrieval) iteratively use relevance information from the user to search the space for other relevant samples. As several regions of interest may be scattered through the space, an effective search algorithm should balance the exploration of the space to find new potential regions of interest and the exploitation of areas around samples which are known relevant. However, many algorithms concentrate the search on areas which are close to the images that the user has marked as relevant, according to a distance function in the (possibly deformed) multidimensional feature space. This maximizes the number of relevant images retriev…
Hierarchies of Self-Organizing Maps for action recognition
2016
We propose a hierarchical neural architecture able to recognise observed human actions. Each layer in the architecture represents increasingly complex human activity features. The first layer consists of a SOM which performs dimensionality reduction and clustering of the feature space. It represents the dynamics of the stream of posture frames in action sequences as activity trajectories over time. The second layer in the hierarchy consists of another SOM which clusters the activity trajectories of the first-layer SOM and learns to represent action prototypes. The third - and last - layer of the hierarchy consists of a neural network that learns to label action prototypes of the second-laye…
A Fuzzy One Class Classifier for Multi Layer Model
2009
The paper describes an application of a fuzzy one-class classifier (FOC ) for the identification of different signal patterns embedded in a noise structured background. The classification phase is applied after a preprocessing phase based on a Multi Layer Model (MLM ) that provides a preliminary signal segmentation in an interval feature space. The FOC has been tested on synthetic and real microarray data in the specific problem of DNA nucleosome and linker regions identification. Results have shown, in both cases, a good recognition rate.