Search results for "Femtoliter"

showing 2 items of 2 documents

Imbibition of Femtoliter-Scale DNA-Rich Aqueous Droplets into Porous Nylon Substrates by Molecular Printing

2019

This work presents the first reported imbibition mechanism of femtoliter (fL)-scale droplets produced by microchannel cantilever spotting (μCS) of DNA molecular inks into porous substrates (hydrophilic nylon). Differently from macroscopic or picoliter droplets, the downscaling to the fL-size leads to an imbibition process controlled by the subtle interplay of evaporation, spreading, viscosity, and capillarity, with gravitational forces being quasi-negligible. In particular, the minimization of droplet evaporation, surface tension, and viscosity allows for a reproducible droplet imbibition process. The dwell time on the nylon surface permits further tuning of the droplet lateral size, in acc…

Materials scienceDiffusionSettore CHIM/05 - Scienza e Tecnologia dei Materiali PolimericiEvaporation02 engineering and technology010402 general chemistry01 natural sciencesSurface tensionMolecular ImprintingViscosityElectrochemistrySurface TensionGeneral Materials Sciencedroplets imbibition molecular printing nylon substrates biosensors microarraysPorositySpectroscopyMicrochannelFemtoliterNucleic Acid HybridizationWaterSurfaces and InterfacesDNA021001 nanoscience & nanotechnologyCondensed Matter Physics0104 chemical sciencesNylonsChemical engineeringSettore CHIM/03 - Chimica Generale E InorganicaImbibition0210 nano-technologyHydrophobic and Hydrophilic InteractionsPorosity
researchProduct

Oil-in-Water fL Droplets by Interfacial Spontaneous Fragmentation and Their Electrical Characterization

2019

Inkjet printing is here employed for the first time as a method to produce femtoliter-scale oil droplets dispersed in water. In particular, picoliter-scale fluorinated oil (FC40) droplets are printed in the presence of perfluoro-1-octanol surfactant at a velocity higher than 5 m/s. Femtoliter-scale oil droplets in water are spontaneously formed through a fragmentation process at the water/air interface using minute amounts of nonionic surfactant (down to 0.003% v/v of Tween 80). This fragmentation occurs by a Plateau-Rayleigh mechanism at a moderately high Weber number (10(1)). A microfluidic chip with integrated microelectrodes allows droplets characterization in terms of number and diamet…

Materials scienceFabricationSettore ING-IND/34Femtoliter02 engineering and technologySurfaces and Interfaces010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsInkjet printing Plateau–Rayleigh instability electrical impedance lab-on-chip01 natural sciences0104 chemical sciencesMicroelectrodeChemical engineeringFragmentation (mass spectrometry)Pulmonary surfactantOil dropletEmulsionElectrochemistryWeber numberGeneral Materials Science0210 nano-technologySpectroscopy
researchProduct