Search results for "Fermi energy"
showing 10 items of 60 documents
Verwey-type transition in EuNiP
2006
High temperature 151Eu Mossbauer measurements provide proof for inhomogeneous mixed-valent behaviour in EuNiP. We observed that EuNiP undergoes a Verwey-type charge delocalisation transition when heated above 470 K prior to the structural γ-β phase transition at T ≈ 510 K. This finding confirms the results of photoemission spectroscopy in the isostructural compound EuPdP and of TB-LMTO-ASA band structure calculations. We discuss the role of a van Hove singularity associated with a high density of 4f states close to the Fermi energy in inhomogeneous mixed europium valency, and the microscopic mechanism of γ-β phase transition in compounds analogous to EuNiP.
Fermi energy dependence of the optical emission in core/shell InAs nanowire homostructures.
2017
InAs nanowires grown by vapor–liquid–solid (VLS) method are investigated by photoluminescence. We observe that the Fermi energy of all samples is reduced by ~20 meV when the size of the Au nanoparticle used for catalysis is increased from 5 to 20 nm. Additional capping with a thin InP shell enhances the optical emission and does not affect the Fermi energy. The unexpected behavior of the Fermi energy is attributed to the differences in the residual donor (likely carbon) incorporation in the axial (low) and lateral (high incorporation) growth in the VLS and vapor–solid (VS) methods, respectively. The different impurity incorporation rate in these two regions leads to a core/shell InAs homost…
Spinovo rozlisena time-of-flight k-reozlisena fotoemissia Ir-- Kompletny fotoemissny experiment.
2017
Ultramicroscopy 183, 19 - 29 (2017). doi:10.1016/j.ultramic.2017.06.025
Fingerprints of spin-orbital polarons and of their disorder in the photoemission spectra of doped Mott insulators with orbital degeneracy
2017
We explore the effects of disordered charged defects on the electronic excitations observed in the photoemission spectra of doped transition metal oxides in the Mott insulating regime by the example of the $R_{1-x}$Ca$_x$VO$_3$ perovskites, where $R=$La,$\dots$,Lu. A fundamental characteristic of these vanadium $d^2$ compounds with partly filled $t_{2g}$ valence orbitals is the persistence of spin and orbital order up to high doping, in contrast to the loss of magnetic order in high-$T_c$ cuprates at low defect concentration. We demonstrate that the disordered electronic structure of doped Mott-Hubbard insulators can be obtained with high precision within the unrestricted Hartree-Fock appro…
Dimensionality effects in restricted bosonic and fermionic systems
2000
The phenomenon of Bose-like condensation, the continuous change of the dimensionality of the particle distribution as a consequence of freezing out of one or more degrees of freedom in the low particle density limit, is investigated theoretically in the case of closed systems of massive bosons and fermions, described by general single-particle hamiltonians. This phenomenon is similar for both types of particles and, for some energy spectra, exhibits features specific to multiple-step Bose-Einstein condensation, for instance the appearance of maxima in the specific heat. In the case of fermions, as the particle density increases, another phenomenon is also observed. For certain types of sing…
Tailoring the electronic structure of half-metallic Heusler alloys
2009
We investigated element-specific magnetic moments and the spin-resolved unoccupied density of states (DOS) of polycrystalline ${\text{Co}}_{2}\text{Ti}Z$ $(Z=\text{Si},\text{ }\text{Ge},\text{ }\text{Sn},\text{ }\text{Sb})$, ${\text{Co}}_{2}{\text{Mn}}_{x}{\text{Ti}}_{1\ensuremath{-}x}\text{Si}$ and ${\text{Co}}_{2}{\text{MnGa}}_{1\ensuremath{-}x}{\text{Ge}}_{x}$ Heusler alloys using circular dichroism in x-ray absorption spectroscopy (XMCD). We find a small $(l0.03{\ensuremath{\mu}}_{B})$ Ti moment oriented antiparallel and a large $(g3{\ensuremath{\mu}}_{B})$ Mn moment oriented parallel to the Co moment of approximately $1{\ensuremath{\mu}}_{B}$ per atom in the investigated compounds. Orb…
Spin scattering and spin-polarized hybrid interface states at a metal-organic interface
2011
Spin scattering at the interface formed between metallic Fe and Cu-phthalocyanine molecules is investigated by spin-polarized scanning tunneling spectroscopy and spin-resolved photoemission. The results are interpreted using first-principles electronic structure theory. The combination of experimental and theoretical techniques allows us to shed light on the role of hybrid interface states for the spin scattering. We show that Cu-phthalocyanine acts, via hybrid interface states, as a local spin filter up to room temperature both below and above the Fermi energy, ${E}_{\mathrm{F}}$. At the same time, the molecule behaves as a featureless scattering barrier in a region of about 1 eV around ${…
Disorder and localization effects on the local spectroscopic and infrared optical properties ofGa1−xMnxAs
2015
We study numerically the influence of disorder and localization effects on the local spectroscopic characteristics and infrared optical properties of ${\text{Ga}}_{1\ensuremath{-}x}{\text{Mn}}_{x}\text{As}$. We treat the band structure and disorder effects at an equal level by using an exact diagonalization supercell simulation method. This method accurately describes the low-doping limit and gives a clear picture of the transition to higher dopings, which captures the localization effects inaccessible to other theoretical methods commonly used. Our simulations capture the rich in-gap localized states observed in scanning tunneling microscopy studies and reproduce the observed features of t…
Persistent spin and charge currents and magnification effects in open ring conductors subject toRashba coupling
2007
We analyze the effect of Rashba spin-orbit coupling and of a local tunnel barrier on the persistent spin and charge currents in a one-dimensional conducting Aharonov-Bohm (AB) ring symmetrically coupled to two leads. First, as an important consequence of the spin-splitting, it is found that a persistent spin current can be induced which is not simply proportional to the charge current. Second, a magnification effect of the persistent spin current is shown when one tunes the Fermi energy near the Fano-type antiresonances of the total transmission coefficient governed by the tunnel barrier strength. As an unambiguous signature of spin-orbit coupling we also show the possibility to produce a p…
Semiphenomenological approach to nucleon properties in nuclear-matter
1992
We have evaluated the nucleon self-energy in a model that has proper analytical properties, satisfies the low density theorem and provides values of Im \ensuremath{\Sigma} for high densities comparable to those of realistic microscopic approaches. The model, however, relies only upon the NN experimental cross sections and the empirical spin-isospin interaction, which induces an important polarization of the medium. The results obtained for the spectral functions, occupation numbers, and effective masses are quite reasonable. The model does not give the absolute value of the nucleon self-energy but only differences with respect to the Fermi energy. On the other hand, it provides an easy and …