Search results for "Fermi gas"

showing 10 items of 86 documents

Effects of Conduction Band Structure and Dimensionality of the Electron Gas on Transport Properties of InSe under Pressure

1996

We report Hall effect and resistivity measurements in InSe under pressure. The electron concentration strongly decreases under pressure in samples exhibiting 3D transport behaviour. This is explained by the existence of an excited minimum in the conduction band moving to lower energies under pressure. The related impurity level traps electrons as it reaches the band gap and approaches the Fermi level. In samples exhibiting 2D behaviour the electron concentration remains constant. This behaviour, together with the pressure dependence of the Hall mobility, is consistent with a previous model which considers high mobility 3D electrons and low mobility 2D electrons to contribute to charge trans…

Condensed matter physicsChemistryBand gapFermi levelElectronCondensed Matter PhysicsElectronic Optical and Magnetic Materialssymbols.namesakeElectrical resistivity and conductivityHall effectExcited statesymbolsFermi gasQuasi Fermi levelphysica status solidi (b)
researchProduct

Partial self-consistency and analyticity in many-body perturbation theory: Particle number conservation and a generalized sum rule

2016

We consider a general class of approximations which guarantees the conservation of particle number in many-body perturbation theory. To do this we extend the concept of $\Phi$-derivability for the self-energy $\Sigma$ to a larger class of diagrammatic terms in which only some of the Green's function lines contain the fully dressed Green's function $G$. We call the corresponding approximations for $\Sigma$ partially $\Phi$-derivable. A special subclass of such approximations, which are gauge-invariant, is obtained by dressing loops in the diagrammatic expansion of $\Phi$ consistently with $G$. These approximations are number conserving but do not have to fulfill other conservation laws, such…

Conservation lawConservation of energyapproximationsStrongly Correlated Electrons (cond-mat.str-el)ta114Particle numberparticle number conservationFOS: Physical sciencesSigma02 engineering and technologymany-body perturbation theoryGreen's function021001 nanoscience & nanotechnology01 natural sciencesCondensed Matter - Strongly Correlated ElectronsContinuity equationQuantum mechanics0103 physical sciencesSum rule in quantum mechanics010306 general physics0210 nano-technologyFermi gasAnderson impurity modelMathematical physicsMathematics
researchProduct

The electron gas with a strong pairing interaction: Three particle correlations and the Thouless instability

2000

We derive simplified Faddeev type equations for the three particle T-matrix which are valid in the Hubbard model where only electrons with opposite spins interact. Using the approximation of dynamical mean field theory these equations are partially solved numerically for the attractive Hubbard model. It is shown that the three particle T-matrix contains a term vanishing $\sim T^2$ at the Thouless (or BCS) instability where the two-particle T-matrix diverges. Based on the three particle term we further derive the low density - strong coupling extension for the two-particle vertex function. We therefore understand our equations as a step towards a systematic low density expansion from the wea…

CouplingPhysicsHubbard modelStrongly Correlated Electrons (cond-mat.str-el)Condensed Matter - SuperconductivityVertex functionFOS: Physical sciencesElectronBCS theoryInstabilitySuperconductivity (cond-mat.supr-con)Condensed Matter - Strongly Correlated ElectronsPairingQuantum mechanicsQuantum electrodynamicsFermi gas
researchProduct

Small-amplitude collective modes of a finite-size unitary Fermi gas in deformed traps

2019

We have investigated collective breathing modes of a unitary Fermi gas in deformed harmonic traps. The ground state is studied by the Superfluid Local Density Approximation (SLDA) and small-amplitude collective modes are studied by the iterative Quasiparticle Random Phase Approximation (QRPA). The results illustrate the evolutions of collective modes of a small system in traps from spherical to elongated or pancake deformations. For small spherical systems, the influences of different SLDA parameters are significant, and, in particular, a large pairing strength can shift up the oscillation frequency of collective mode. The transition currents from QRPA show that the compressional flow patte…

EXCITATIONSCondensed Matter::Quantum GasesPhysicsCondensed matter physics010308 nuclear & particles physicsOscillationfermi gasestiheysfunktionaaliteoriaFOS: Physical sciences114 Physical sciences01 natural sciencesultracold gasesSuperfluidityQuantum Gases (cond-mat.quant-gas)random phase approximationPairing0103 physical sciencesQuasiparticleLocal-density approximationCondensed Matter - Quantum Gases010306 general physicsGround stateFermi gasRandom phase approximationdensity functional theoryPhysical Review A
researchProduct

Generation of energy selective excitations in quantum hall edge states

2011

We operate an on-demand source of single electrons in high perpendicular magnetic fields up to 30T, corresponding to a filling factor below 1/3. The device extracts and emits single charges at a tunable energy from and to a two-dimensional electron gas, brought into well defined integer and fractional quantum Hall (QH) states. It can therefore be used for sensitive electrical transport studies, e.g. of excitations and relaxation processes in QH edge states.

FOS: Physical sciences02 engineering and technologyElectronCorrelated Electron Systems / High Field Magnet Laboratory (HFML)Quantum Hall effect7. Clean energy01 natural sciences0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)Materials ChemistryPerpendicularElectrical and Electronic EngineeringWell-defined010306 general physicsPhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsFilling factorRelaxation (NMR)021001 nanoscience & nanotechnologyCondensed Matter PhysicsElectronic Optical and Magnetic MaterialsMagnetic fieldComputingMethodologies_DOCUMENTANDTEXTPROCESSING0210 nano-technologyFermi gas
researchProduct

Strongly interacting Fermi gases with density imbalance

2005

We consider density-imbalanced Fermi gases of atoms in the strongly interacting, i.e. unitarity, regime. The Bogoliubov-deGennes equations for a trapped superfluid are solved. They take into account the finite size of the system, as well as give rise to both phase separation and FFLO type oscillations in the order parameter. We show how radio-frequency spectroscopy reflects the phase separation, and can provide direct evidence of the FFLO-type oscillations via observing the nodes of the order parameter.

FOS: Physical sciencesGeneral Physics and Astronomy01 natural sciencesElectromagnetic radiation010305 fluids & plasmasSuperconductivity (cond-mat.supr-con)SuperfluidityCondensed Matter - Strongly Correlated ElectronsCondensed Matter::Superconductivity0103 physical sciences010306 general physicsSpectroscopyPhysicsCondensed Matter::Quantum GasesStrongly Correlated Electrons (cond-mat.str-el)UnitarityCondensed matter physicsCondensed Matter::OtherCondensed Matter - SuperconductivityFermionCondensed Matter - Other Condensed MatterQuantum electrodynamicsFermi gasOther Condensed Matter (cond-mat.other)Dimensionless quantityFermi Gamma-ray Space Telescope
researchProduct

Simultaneous measurement of the muon neutrino charged-current cross section on oxygen and carbon without pions in the final state at T2K

2020

Authors: K. Abe,56 N. Akhlaq,45 R. Akutsu,57 A. Ali,32 C. Alt,11 C. Andreopoulos,54,34 L. Anthony,21 M. Antonova,19 S. Aoki,31 A. Ariga,2 T. Arihara,59 Y. Asada,69 Y. Ashida,32 E. T. Atkin,21 Y. Awataguchi,59 S. Ban,32 M. Barbi,46 G. J. Barker,66 G. Barr,42 D. Barrow,42 M. Batkiewicz-Kwasniak,15 A. Beloshapkin,26 F. Bench,34 V. Berardi,22 L. Berns,58 S. Bhadra,70 S. Bienstock,53 S. Bolognesi,6 T. Bonus,68 B. Bourguille,18 S. B. Boyd,66 A. Bravar,13 D. Bravo Berguño,1 C. Bronner,56 S. Bron,13 A. Bubak,51 M. Buizza Avanzini ,10 T. Campbell,7 S. Cao,16 S. L. Cartwright,50 M. G. Catanesi,22 A. Cervera,19 D. Cherdack,17 N. Chikuma,55 G. Christodoulou,12 M. Cicerchia,24,† J. Coleman,34 G. Collazu…

Fermi gasPhysics::Instrumentation and DetectorsMonte Carlo methodmeasured [channel cross section]KAMIOKANDEmuon neutrino01 natural sciencesPhysics Particles & FieldsHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)secondary beam [neutrino/mu][PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Particle Physics ExperimentsMuon neutrinoQDCharged currentQCPhysicsneutrino: energy spectrumJ-PARC LabPhysicsinteraction [neutrino nucleus]T2K experimentoscillation [neutrino]Monte Carlo [numerical calculations]suppressionNuclear & Particles PhysicskinematicsPhysical Sciences0202 Atomic Molecular Nuclear Particle and Plasma PhysicsGround statenumerical calculations: Monte Carlochannel cross section: measuredParticle Physics - Experiment530 PhysicsFOS: Physical sciencesAstronomy & Astrophysics530Nuclear physicsPionnear detector0103 physical sciencessimultaneous measurement0201 Astronomical and Space SciencesSCATTERINGddc:530010306 general physicsNeutrino oscillation0206 Quantum Physicscross section: charged currentMuonScience & Technologynucleus: ground stateNUCLEI010308 nuclear & particles physicsnucleus: targethep-excarbonenergy spectrum [neutrino]neutrino nucleus: interactionground state [nucleus]neutrino/mu: secondary beamtarget [nucleus]random phase approximationcharged current [cross section]High Energy Physics::Experimentneutrino: oscillationoxygenexperimental resultsPhysical Review D
researchProduct

Characterization of nuclear effects in muon-neutrino scattering on hydrocarbon with a measurement of final-state kinematics and correlations in charg…

2018

This paper reports measurements of final-state proton multiplicity, muon and proton kinematics, and their correlations in charged-current pionless neutrino interactions, measured by the T2K ND280 near detector in its plastic scintillator (C$_8$H$_8$) target. The data were taken between years 2010 and 2013, corresponding to approximately 6$\times10^{20}$ protons on target. Thanks to their exploration of the proton kinematics and of kinematic imbalances between the proton and muon kinematics, the results offer a novel probe of the nuclear-medium effects most pertinent to the (sub-)GeV neutrino-nucleus interactions that are used in accelerator-based long-baseline neutrino oscillation measureme…

Fermi gasProtoninteraction: modelPhysics and Astronomy (miscellaneous)Physics::Instrumentation and DetectorsKinematicsKAMIOKANDE7. Clean energy01 natural sciencesPhysics Particles & Fieldscharged currentHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Particle Physics ExperimentsMuon neutrinoneutrino oscillationAXISNuclear ExperimentHigh Energy Physics - Experiment; High Energy Physics - Experiment; Physics and Astronomy (miscellaneous)Charged currentneutrino: interactionPhysicsCHALLENGESPhysicsJ-PARC Labp: final state3. Good healthtransversekinematicsPhysical SciencesNeutrinospectral representationFOS: Physical sciencesddc:500.2Astronomy & AstrophysicsREGIONNuclear physicsphase spacenear detectormuon0103 physical sciencesEXCITATIONddc:530010306 general physicsNeutrino oscillationDETECTORnuclear matter effectscintillation counterp: multiplicityMuonScience & Technology010308 nuclear & particles physicshep-exnucleusscatteringnuclear matter: effectneutrino nucleus: interactionfinal-state interactionneutrino/mu: secondary beamPhase spacecorrelationPhysics::Accelerator Physicsneutrino nucleus interactionneutrino: oscillationexperimental results
researchProduct

Nonequilibrium Green's function approach to strongly correlated few-electron quantum dots

2009

The effect of electron-electron scattering on the equilibrium properties of few-electron quantum dots is investigated by means of nonequilibrium Green's function theory. The ground and equilibrium states are self-consistently computed from the Matsubara (imaginary time) Green's function for the spatially inhomogeneous quantum dot system whose constituent charge carriers are treated as spin-polarized. To include correlations, the Dyson equation is solved, starting from a Hartree-Fock reference state, within a conserving (second-order) self-energy approximation where direct and exchange contributions to the electron-electron interaction are included on the same footing. We present results for…

KADANOFF-BAYM EQUATIONSFOS: Physical sciencesquantum dotsElectronelectron-electron interactionsSEMICONDUCTORSGreen's function methodsATOMSCondensed Matter - Strongly Correlated Electronssymbols.namesakeMOLECULESSYSTEMSQuantum mechanicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)Quantum statistical mechanicsKINETICSPhysicsstrongly correlated electron systemstotal energyCondensed Matter - Mesoscale and Nanoscale PhysicsStrongly Correlated Electrons (cond-mat.str-el)Condensed matter physicselectron-electron scatteringHOLE PLASMASCondensed Matter Physicsground statesImaginary timecarrier densityElectronic Optical and Magnetic MaterialsDistribution functionINITIAL CORRELATIONSQuantum dotGreen's functionSPECTRAL FUNCTIONSsymbolsStrongly correlated materialCRYSTALLIZATIONFermi gasPhysical Review. B: Condensed Matter and Materials Physics
researchProduct

Electronic polarizability of small sodium clusters.

1986

Abstract : Small sodium clusters consisting of 1 to 40 atoms are described as spheres of interacting homogeneous electron gas (jellium model). The static electronic polarizability is calculated using self consistent density functional methods. An excellent agreement with recent experimental results is observed.

Materials sciencechemistryPolarizabilityHomogeneousSodiumJelliumHomogeneity (physics)Physics::Atomic and Molecular Clusterschemistry.chemical_elementSPHERESAtomic physicsFermi gasPolarization (waves)Physical review. B, Condensed matter
researchProduct