Search results for "Fermi"
showing 10 items of 1388 documents
Universal vortex formation in rotating traps with bosons and fermions.
2004
When a system consisting of many interacting particles is set rotating, it may form vortices. This is familiar to us from every-day life: you can observe vortices while stirring your coffee or watching a hurricane. In the world of quantum mechanics, famous examples of vortices are superconducting films and rotating bosonic $^4$He or fermionic $^3$He liquids. Vortices are also observed in rotating Bose-Einstein condensates in atomic traps and are predicted to exist for paired fermionic atoms. Here we show that the rotation of trapped particles with a repulsive interaction leads to a similar vortex formation, regardless of whether the particles are bosons or (unpaired) fermions. The exact, qu…
Momentum-dependent pseudogaps in the half-filled two-dimensional Hubbard model
2012
We compute unbiased spectral functions of the two-dimensional Hubbard model by extrapolating Green functions, obtained from determinantal quantum Monte Carlo simulations, to the thermodynamic and continuous time limits. Our results clearly resolve the pseudogap at weak to intermediate coupling, originating from a momentum selective opening of the charge gap. A characteristic pseudogap temperature T*, determined consistently from the spectra and from the momentum dependence of the imaginary-time Green functions, is found to match the dynamical mean-field critical temperature, below which antiferromagnetic fluctuations become dominant. Our results identify a regime where pseudogap physics is …
FERMION CONDENSATION, T -LINEAR RESISTIVITY AND PLANCKIAN LIMIT
2019
We explain recent challenging experimental observations of universal scattering rate related to the linear-temperature resistivity exhibited by a large corps of both strongly correlated Fermi systems and conventional metals. We show that the observed scattering rate in strongly correlated Fermi systems like heavy fermion metals and high-$T_c$ superconductors stems from phonon contribution that induce the linear temperature dependence of a resistivity. The above phonons are formed by the presence of flat band, resulting from the topological fermion condensation quantum phase transition (FCQPT). We emphasize that so - called Planckian limit, widely used to explain the above universal scatteri…
Ultracold quantum gases in optical lattices
2005
Artificial crystals of light, consisting of hundreds of thousands of optical microtraps, are routinely created by interfering optical laser beams. These so-called optical lattices act as versatile potential landscapes to trap ultracold quantum gases of bosons and fermions. They form powerful model systems of quantum many-body systems in periodic potentials for probing nonlinear wave dynamics and strongly correlated quantum phases, building fundamental quantum gates or observing Fermi surfaces in periodic potentials. Optical lattices represent a fast-paced modern and interdisciplinary field of research.
Ultracold atomic Bose and Fermi spinor gases in optical lattices
2006
We investigate magnetic properties of Mott-insulating phases of ultracold Bose and Fermi spinor gases in optical lattices. We consider in particular the F=2 Bose gas, and the F=3/2 and F=5/2 Fermi gases. We derive effective spin Hamiltonians for one and two atoms per site and discuss the possibilities of manipulating the magnetic properties of the system using optical Feshbach resonances. We discuss low temperature quantum phases of a 87Rb gas in the F=2 hyperfine state, as well as possible realizations of high spin Fermi gases with either 6Li or 132Cs atoms in the F=3/2 state, and with 173Yb atoms in the F=5/2 state.
A concise review on pseudo-bosons, pseudo-fermions and their relatives
2017
We review some basic definitions and few facts recently established for $\D$-pseudo bosons and for pseudo-fermions. We also discuss an extended version of these latter, based on biorthogonal bases, which lives in a finite dimensional Hilbert space. Some examples are described in details.
Dynamics of a subconstituent picture of weak interactions
1985
We use sum rules in order to discuss the dynamics of the simplest subconstituent model of weak interactions with elementary spin 1/2 fermions and scalar bosons. Vacuum condensates of the scalars play an essential role and lead to features quite different from QCD. With a certain vacuum structure vector dominance of the composite W-mesons is a good approximation, and we also see a clear signal for massless fermions in the two-point function of composite fermions. Thus such a model is in good agreement with standard phenomenology. Composite Higgs particles are also investigated. The effective interaction is evidently of the gauge type.
Quantum critical point in ferromagnet
2008
Abstract The heavy-fermion metal CePd 1 - x Rh x can be tuned from ferromagnetism at x = 0 to non-magnetic state at the critical concentration x c . The non-Fermi liquid behavior at x ≃ x c is recognized by power law dependence of the specific heat C ( T ) given by the electronic contribution, susceptibility χ ( T ) and volume expansion coefficient α ( T ) at low temperatures: C / T ∝ χ ( T ) ∝ α ( T ) / T ∝ 1 / T . We show that this alloy exhibits a universal thermodynamic non-Fermi liquid behavior independent of magnetic ground state. This can be well understood utilizing the quasiparticle picture and the concept of fermion condensation quantum phase transition at the density ρ = p F 3 / …
Quantum Phases in a Resonantly Interacting Boson-Fermion Mixture
2005
We consider a resonantly-interacting Bose-Fermi mixture of $^{40}$K and $^{87}$Rb atoms in an optical lattice. We show that by using a red-detuned optical lattice the mixture can be accurately described by a generalized Hubbard model for $^{40}$K and $^{87}$Rb atoms, and $^{40}$K-$^{87}$Rb molecules. The microscopic parameters of this model are fully determined by the details of the optical lattice and the interspecies Feshbach resonance in the absence of the lattice. We predict a quantum phase transition to occur in this system already at low atomic filling fraction, and present the phase diagram as a function of the temperature and the applied magnetic field.
Pairing in a three-component Fermi gas
2006
We consider pairing in a three-component gas of degenerate fermions. In particular, we solve the finite temperature mean-field theory of an interacting gas for a system where both interaction strengths and fermion masses can be unequal. At zero temperature we find a a possibility of a quantum phase transition between states associated with pairing between different pairs of fermions. On the other hand, finite temperature behavior of the three-component system reveals some qualitative differences from the two-component gas: for a range of parameters it is possible to have two different critical temperatures. The lower one corresponds to a transition between different pairing channels, while …