Search results for "Ferrocene"

showing 6 items of 306 documents

[3 + 2] Cycloadditions in Asymmetric Synthesis of Spirooxindole Hybrids Linked to Triazole and Ferrocene Units: X-ray Crystal Structure and MEDT Stud…

2022

Derivatization of spirooxindole having triazole and ferrocene units was achieved by the [3 + 2] cycloaddition (32CA) reaction approach. Reacting the respective azomethine ylide (AY) intermediate generated in situ with the ethylene derivative produced novel asymmetric cycloadducts with four contiguous asymmetric carbons in an overall high chemical yield with excellent regioselectivity and diastereoselectivity. X-Ray single-crystal structure analyses revealed, with no doubt, the success of the synthesis of the target compounds. The 32CA reaction of AY 5b with ferrocene ethylene 1 has been studied within MEDT. This 32CA reaction proceeds via a two-stage one-step mechanism involving a high asyn…

kemiallinen synteesiPhysics and Astronomy (miscellaneous)asymmetric synthesis; spirooxindole; triazole; ferrocene; azomethine ylide; [3 + 2] cycloaddition reaction; MEDT studyGeneral Mathematicsasymmetric synthesisferrocene[3 + 2] cycloaddition reactionspirooxindoletriazoleazomethine ylideChemistry (miscellaneous)Computer Science (miscellaneous)heterosykliset yhdisteetMEDT studySymmetry
researchProduct

Synthesis and characterization of ferrocene-based Schiff base and ferrocenecarboxaldehyde oxime and their adsorptive removal of methyl blue from aque…

2018

Abstract The ferrocene-based Schiff base 3 was synthetized by reaction of ferrocenecarboxaldehyde 1 with 4-aminoantipyrine 2. However, the reaction of 1 with hydroxylamine affords ferrocenecarboxaldehyde oxime 4. Compounds 3 and 4 were fully characterized by IR, 1H, 13C and DEPT-135 NMR spectroscopy, elemental analyses and also by single crystal X-ray diffraction. Compounds 3 and 4 were used to remove anionic methyl blue dye from wastewater. The results established that both compounds have high adsorption capacity towards methyl blue. Langmuir adsorption capacity of compound 4 (464 mmol/g) is much higher than that of compound 3 (193 mmol/g) at 25 °C. The kinetics data was fitted well pseudo…

methyl blue dyeLangmuirMethyl blue02 engineering and technology010402 general chemistry01 natural sciencesBiochemistryInorganic Chemistrychemistry.chemical_compoundAdsorptionHydroxylamineMaterials ChemistryPhysical and Theoretical Chemistryferrocenecarboxaldehyde oximeta116single crystal X-ray diffractionAqueous solutionSchiff baseOrganic Chemistry021001 nanoscience & nanotechnologyOximeferrocene-based Schiff base0104 chemical sciencesFerrocenechemistryadsorption0210 nano-technologyNuclear chemistryJournal of Organometallic Chemistry
researchProduct

Synthesis and characterization of ferrocene-based Schiff base and ferrocenecarboxaldehyde oxime and their adsorptive removal of methyl blue from aque…

2018

The ferrocene-based Schiff base 3 was synthetized by reaction of ferrocenecarboxaldehyde 1 with 4-aminoantipyrine 2. However, the reaction of 1 with hydroxylamine affords ferrocenecarboxaldehyde oxime 4. Compounds 3 and 4 were fully characterized by IR, 1H, 13C and DEPT-135 NMR spectroscopy, elemental analyses and also by single crystal X-ray diffraction. Compounds 3 and 4 were used to remove anionic methyl blue dye from wastewater. The results established that both compounds have high adsorption capacity towards methyl blue. Langmuir adsorption capacity of compound 4 (464 mmol/g) is much higher than that of compound 3 (193 mmol/g) at 25 °C. The kinetics data was fitted well pseudo-second-o…

methyl blue dyeferrocenecarboxaldehyde oximeadsorptioferrocene-based Schiff basesingle crystal X-ray diffraction
researchProduct

Polysubstituted ferrocenes as tunable redox mediators

2018

A series of four ferrocenyl ester compounds, 1-methoxycarbonyl- (1), 1,1’-bis(methoxycarbonyl)- (2), 1,1’,3-tris(methoxycarbonyl)- (3) and 1,1’,3,3’-tetrakis(methoxycarbonyl)ferrocene (4), has been studied with respect to their potential use as redox mediators. The impact of the number and position of ester groups present in 1–4 on the electrochemical potential E1/2 is correlated with the sum of Hammett constants. The 1/1+–4/4+ redox couples are chemically stable under the conditions of electrolysis as demonstrated by IR and UV–vis spectroelectrochemical methods. The energies of the C=O stretching vibrations of the ester moieties and the energies of the UV–vis absorptions of 1–4 and 1+–4+ c…

redox mediator010402 general chemistryElectrosynthesis01 natural sciencesMedicinal chemistryRedoxFull Research Paperlcsh:QD241-441chemistry.chemical_compoundlcsh:Organic chemistryRedox titrationparamagnetic NMR spectroscopylcsh:ScienceElectrochemical potential010405 organic chemistryChemistryChemical shiftOrganic Chemistryferrocenespectroelectrochemistrycyclic voltammetry0104 chemical sciencesChemistryFerroceneProton NMRlcsh:QCyclic voltammetryBeilstein Journal of Organic Chemistry
researchProduct

Synthesis and Structure Elucidation of Novel Spirooxindole Linked to Ferrocene and Triazole Systems via [3 + 2] Cycloaddition Reaction

2022

In the present work, a novel heterocyclic hybrid of a spirooxindole system was synthesized via the attachment of ferrocene and triazole motifs into an azomethine ylide by [3 + 2] cycloaddition reaction protocol. The X-ray structure of the heterocyclic hybrid (1″R,2″S,3R)-2″-(1-(3-chloro-4-fluorophenyl)-5-methyl-1H-1,2,3-triazole-4-carbonyl)-5-methyl-1″-(ferrocin-2-yl)-1″,2″,5″,6″,7″,7a″-hexahydrospiro[indoline-3,3″-pyrrolizin]-2-one revealed very well the expected structure, by using different analytical tools (FTIR and NMR spectroscopy). It crystallized in the triclinic-crystal system and the P-1-space group. The unit cell p…

spirooxindole; ferrocene; triazole; azomethine ylide; [3 + 2] cycloaddition (32CA) reactiontriazoleazomethine ylideChemistry (miscellaneous)Organic ChemistryDrug DiscoveryferroceneMolecular MedicinePharmaceutical Sciencespirooxindole[3 + 2] cycloaddition (32CA) reactionPhysical and Theoretical ChemistryAnalytical ChemistryMolecules; Volume 27; Issue 13; Pages: 4095
researchProduct

On the mechanism of imine elimination from Fischer tungsten carbene complexes

2016

(Aminoferrocenyl)(ferrocenyl)carbene(pentacarbonyl)tungsten(0) (CO)5W=C(NHFc)Fc (W(CO)5(E-2)) is synthesized by nucleophilic substitution of the ethoxy group of (CO)5W=C(OEt)Fc (M(CO)5(1Et)) by ferrocenyl amide Fc-NH– (Fc = ferrocenyl). W(CO)5(E-2) thermally and photochemically eliminates bulky E-1,2-diferrocenylimine (E-3) via a formal 1,2-H shift from the N to the carbene C atom. Kinetic and mechanistic studies to the formation of imine E-3 are performed by NMR, IR and UV–vis spectroscopy and liquid injection field desorption ionization (LIFDI) mass spectrometry as well as by trapping experiments for low-coordinate tungsten complexes with triphenylphosphane. W(CO)5(E-2) decays thermally i…

tungstenIminemechanism010402 general chemistryPhotochemistry01 natural sciencesMedicinal chemistryReductive eliminationFull Research Paperlcsh:QD241-441chemistry.chemical_compoundlcsh:Organic chemistryAmideNucleophilic substitutionlcsh:Science010405 organic chemistryChemistryOrganic ChemistryferroceneOxidative addition0104 chemical sciencesChemistrycarbene complexesAlkoxy groupPseudorotationlcsh:QimineCarbeneBeilstein Journal of Organic Chemistry
researchProduct