Search results for "Ferroelectric"

showing 10 items of 374 documents

Magnetoelectric effect in mixed valency oxides mediated by charge carriers

2008

We show that the presence of free carriers in a substance can generate the multiferroic behavior. Namely, if the substance has mixed-valence ions, which can supply free carriers and have electric dipole and spin moments, all three types of long-range order (ferromagnetic, ferroelectric and magnetoelectric (ME)) can occur at low temperature. The physical origin of the effect is that charge carriers can mediate the multiferroic behavior via spin - spin (RKKY), dipole-dipole and dipole - spin interactions. Our estimate of the interaction magnitude shows that there exist an optimal carrier concentration, at which the strength of ME interaction is maximal and comparable to that of spin-spin RKKY…

Condensed Matter - Materials ScienceMaterials scienceRKKY interactionSpinsCondensed matter physicsMagnetoelectric effectGeneral Physics and AstronomyMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesDisordered Systems and Neural Networks (cond-mat.dis-nn)Condensed Matter - Disordered Systems and Neural NetworksFerroelectricityDipoleCondensed Matter::Materials ScienceFerromagnetismMultiferroicsCharge carrierCondensed Matter::Strongly Correlated ElectronsComputer Science::Databases
researchProduct

Manifestation of dipole-induced disorder in self-assembly of ferroelectric and ferromagnetic nanocubes

2019

The authors thank Marjeta Maˇcek Kržmanc for many useful discussions. The financial support of M-ERA.NET Project Har-vEnPiez (Innovative nano-materials and architectures for integrated piezoelectric energy harvesting applications) is gratefully acknowledged. D.Z. acknowledges the support of the postdoctoral research program at the University of Latvia (Project No. 1.1.1.2/VIAA/1/16/072). The computing time of the LASC cluster was provided by the Institute of Solid State Physics (ISSP).

Condensed Matter - Materials ScienceMaterials scienceSuperlatticeMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesFerroelectricity0104 chemical sciencesDipoleNanocrystalFerromagnetismChemical physics:NATURAL SCIENCES:Physics [Research Subject Categories]General Materials ScienceSelf-assembly0210 nano-technologyPolarization (electrochemistry)Perovskite (structure)
researchProduct

Domain-Enhanced Interlayer Coupling in Ferroelectric/Paraelectric Superlattices

2004

We investigate the ferroelectric phase transition and domain formation in a periodic superlattice consisting of alternate ferroelectric (FE) and paraelectric (PE) layers of nanometric thickness. We find that the polarization domains formed in the different FE layers can interact with each other via the PE layers. By coupling the electrostatic equations with those obtained by minimizing the Ginzburg-Landau functional we calculate the critical temperature of transition Tc as a function of the FE/PE superlattice wavelength and quantitatively explain the recent experimental observation of a thickness dependence of the ferroelectric transition temperature in KTaO3/KNbO3 strained-layer superlatti…

Condensed Matter - Materials SciencePhase transitionPotassium niobateMaterials scienceCondensed matter physicsSuperlatticeTransition temperatureMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciencesGeneral Physics and AstronomyDielectricPolarization (waves)FerroelectricityCondensed Matter - Other Condensed MatterCondensed Matter::Materials Sciencechemistry.chemical_compoundchemistryGinzburg–Landau theoryOther Condensed Matter (cond-mat.other)Physical Review Letters
researchProduct

Quantum Mechanical Modelling of Pure and Defective KNbO3 Perovskites

2000

Ab initio electronic structure calculations using the density-functional theory (DFT) are performed for KNbO3 with and without defects. Ferroelectric distortive transitions involve very small changes in energies and are therefore sensitive to DFT-approximations. This is discussed by comparing results obtained with the local density approximation (LDA) to those where generalized gradient approximations (GGA) are used. The results of ab initio calculations for F-type centers and bound hole polarons are compared to those obtained by a semiempirical method of the Intermediate Neglect of the Differential Overlap (INDO), based on the HartreeFock formalism. Supercells with 40 and 320 atoms were us…

Condensed Matter::Materials ScienceCondensed matter physicsAb initio quantum chemistry methodsPhysics::Atomic and Molecular ClustersAb initioDensity functional theoryElectronic structureLocal-density approximationPolaronMolecular physicsFerroelectricityQuantumMathematics
researchProduct

The Peculiar Physical Properties of Nanosized Ferroics (Nanoferroics)

2013

This Chapter contains the experimental facts about size effects in nanoferroics. They include ferroelectric, ferroelastic, magnetic and multiferroic nanostructured materials. The main peculiar feature of nanoferroics is the geometric confinement originating from their surfaces and interfaces. This is in contrast to the ordinary bulk ferroics, where the sample surface plays a minor role. In particular, in nanoferroics, the surface generates the physical properties gradients in the normal (to the surface) direction. This fact yields strong size effects and spatial inhomogeneity of the nanoferroics properties, which should be taken into account to get their adequate physical description. We re…

Condensed Matter::Materials ScienceMagnetizationLattice constantMaterials scienceCondensed matter physicsFerroicsMultiferroicsSoft modesCoercivityFerroelectricityMagnetic susceptibility
researchProduct

Multiferroic BiFeO<inf>3</inf> for conductance control at the LaAlO<inf>3</inf>/SrTiO<inf>3</inf>-interface

2015

Multiferroic materials possessing both magnetic and ferroelectric order enable in principle to switch order parameters using not the direct reciprocal field, e.g. to switch the magnetization by an electric field or the electric polarization by a magnetic field. A recent breakthrough was achieved by the demonstration of the ferromagnetic switching of a Co layer with an electric field employing the multiferroic BiFeO 3 [1]. The latter material is a perovskite based oxide that shows stable ferro-electricity as well as an antiferromagnetic order at room temperature [2,3]. Due to a Dzyaloshinskii-Moriya interaction induced by rotation of oxygen octahedra leading to noncollinear Fe-O-Fe bonds a s…

Condensed Matter::Materials ScienceMagnetizationPolarization densityExchange biasMaterials scienceMagnetic domainFerromagnetismCondensed matter physicsElectric fieldAntiferromagnetismCondensed Matter::Strongly Correlated ElectronsFerroelectricity2015 IEEE Magnetics Conference (INTERMAG)
researchProduct

Polaronic relaxation in perovskites

1995

We report a low-temperature loss anomaly in several oxidic perovskites such as ${\mathrm{KTaO}}_{3}$, ${\mathrm{KTaO}}_{3}$:Nb, ${\mathrm{SrTiO}}_{3}$, ${\mathrm{SrTiO}}_{3}$:Ca, ${\mathrm{PbTiO}}_{3}$:La, Cu, and ${\mathrm{BaTiO}}_{3}$:La. We show that this anomaly arises from a low-frequency dielectric relaxation. The activation energy and the relaxation time of this process are nearly the same for all the investigated perovskites disregarding their composition, texture, and ferroelectric properties. We thus ascribe the loss anomaly to the localization of polarons on residual defects. Although the dielectric losses in ${\mathrm{SrTiO}}_{3}$ and ${\mathrm{SrTiO}}_{3}$:Ca are qualitatively …

Condensed Matter::Materials ScienceMaterials scienceCondensed matter physicsCondensed Matter::SuperconductivityRelaxation (NMR)Dielectric lossDielectricTexture (crystalline)Activation energyAnomaly (physics)PolaronFerroelectricityPhysical Review B
researchProduct

Continuous theory of switching in geometrically confined ferroelectrics

2014

A theory of ferroelectric switching in geometrically confined samples like thin films and multilayers with domain structure has been proposed. For that we use Landau–Khalatnikov (LK) equations with free energy functional being dependent on polarization gradients. In this case, the consistent theory can be developed as for thin ferroelectric films and multilayers the domain structure reduces to Fourier series in ferroelectric polarization. The specific calculations are presented for thin film ferroelectric with dead layers and ferro-/paraelectric multilayer. Our theory is generalizable to ferroelectrics and multiferroics with other geometries.

Condensed Matter::Materials ScienceMaterials scienceCondensed matter physicsMultiferroicsDielectricThin filmCondensed Matter PhysicsPolarization (waves)Fourier seriesFerroelectricityElectronic Optical and Magnetic MaterialsEnergy functionalFerroelectrics
researchProduct

Depolarization Field and Properties of Thin Ferroelectric Films with Inclusion of the Electrode Effect

2005

The influence of metallic electrodes on the properties of thin ferroelectric films is considered in the framework of the Ginzburg-Landau phenomenological theory. The contribution of the electrodes with different screening lengths l s of carriers in the electrode material is included in the free-energy functional. The critical temperature T cl , the critical thickness of the film, and the critical screening length of the electrode at which the ferroelectric phase transforms into the paraelectric phase are calculated. The Euler-Lagrange equation for the polarization P is solved by the direct variational method. The results demonstrate that the film properties can be calculated by minimizing t…

Condensed Matter::Materials ScienceMaterials scienceCondensed matter physicsSolid-state physicsPhase (matter)ElectrodeDielectricCondensed Matter PhysicsPolarization (electrochemistry)Critical valueFerroelectricityElectronic Optical and Magnetic MaterialsPyroelectricityPhysics of the Solid State
researchProduct

<title>Glass to ferroelectric phase transition induced by ac electric field in PbMg<formula><inf><roman>1/3</roman><…

2003

The nonlinear dielectric response of epitaxial heterostructures of relaxor ferroelectric PbMg1/3Nb2/3O3 thin films was experimentally studied using digital Fourier analysis. The amplitudes and the phase angles of the dielectric harmonics were determined as a function of temperature and the amplitude of the sinusoidal ac field. The response of the films was reconstructed assuming a linear contribution of the film-electrode interface capacitance. In the films at low amplitudes of ac field, a glass-like behavior was identified by a maximum in the third-order nonlinear dielectric permittivity around the freezing temperature, accompanied by a square field dependence of the amplitudes of the odd …

Condensed Matter::Materials SciencePhase transitionMaterials scienceAmplitudeNuclear magnetic resonanceCondensed matter physicsElectric fieldHarmonicsField dependenceDielectricCapacitanceFerroelectricitySPIE Proceedings
researchProduct