Search results for "Ferromagnetic"

showing 10 items of 81 documents

Effect of nanostructure layout on spin pumping phenomena in antiferromagnet/nonmagnetic metal/ferromagnet multilayered stacks

2017

In this work we focus on magnetic relaxation in Mn80Ir20(12 nm)/Cu(6 nm)/Py(dF) antiferromagnet/Cu/ferromagnet (AFM/Cu/FM) multilayers with different thickness of the ferromagnetic permalloy layer. An effective FM-AFM interaction mediated via the conduction electrons in the nonmagnetic Cu spacer – the spin-pumping effect – is detected as an increase in the linewidth of the ferromagnetic resonance (FMR) spectra and a shift of the resonant magnetic field. We further find experimentally that the spin-pumping-induced contribution to the linewidth is inversely proportional to the thickness of the Py layer. We show that this thickness dependence likely originates from the dissipative dynamics of …

010302 applied physicsPermalloySpin pumpingMaterials scienceCondensed matter physicsSpintronicsGeneral Physics and Astronomy01 natural sciencesFerromagnetic resonancelcsh:QC1-999Magnetic fieldCondensed Matter::Materials ScienceLaser linewidthFerromagnetism0103 physical sciencesAntiferromagnetismCondensed Matter::Strongly Correlated Electrons010306 general physicslcsh:PhysicsAIP Advances
researchProduct

Photoswitching of the antiferromagnetic coupling in an oxamato-based dicopper(ii) anthracenophane

2011

Thermally reversible photomagnetic (ON/OFF) switching behavior has been observed in a dinuclear oxamatocopper(ii) anthracenophane upon UV light irradiation and heating; the two CuII ions (SCu = 1/2) that are antiferromagnetically coupled in the dicopper(ii) metallacyclic precursor (ON state) become uncoupled in the corresponding [4+4] photocycloaddition product (OFF state), as substantiated from both experimental and theoretical studies. © 2011 The Royal Society of Chemistry.

010405 organic chemistryChemistryMetals and AlloysLight irradiation[CHIM.MATE]Chemical Sciences/Material chemistryGeneral Chemistry010402 general chemistryPhotochemistry01 natural sciencesCatalysisAntiferromagnetic coupling0104 chemical sciences3. Good healthSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsIonCrystallographyMaterials ChemistryCeramics and CompositesChemical Communications
researchProduct

CuII2, CuII4 and CuII6 complexes with 3-(2-pyridyl)pyrazolate. Structure, magnetism and core interconversion

2019

Abstract Reactions of stoichiometric amounts of L1(−) (HL1 = 3-(2-pyridyl)pyrazole) with [Cu(H2O)6](ClO4)2, with or without PhCO2−, in MeOH or N,N′-dimethylformamide (dmf), led to the isolation of three copper(II) complexes of varying nuclearity, [CuII2(L1)2(ClO4)2(MeOH)2] (1), [CuII4(L1)4(O2CPh)2(MeOH)4](ClO4)2·2H2O (2) and [CuII6(L1)6(O2CPh)2(ClO4)2(dmf)4](ClO4)2·2dmf·2H2O (3). Structural analysis reveals two centrosymmetric four-coordinate {CuII(L1)(ClO4)(MeOH)} units are dipyrazolate-bridged in 1, giving rise to a square-pyramidal (SP; τ = 0.13) coordination to the CuII ion. In 2, two centrosymmetric four-coordinate dipyrazolate-bridged {CuII2(μ-L1)2(MeOH)2}2+ units in two layers are he…

010405 organic chemistryMagnetismchemistry.chemical_elementPyrazole010402 general chemistry01 natural sciencesCopperAntiferromagnetic coupling0104 chemical sciencesIonInorganic ChemistrySolventchemistry.chemical_compoundCrystallographychemistryMaterials ChemistryPhysical and Theoretical ChemistryStoichiometryPolyhedron
researchProduct

Magnetostructural correlations in CuII−NC−WV linkage: the case of [CuII(diimine)]2+−[WV(CN)8]3− 0D assemblies

2009

International audience; We report on the syntheses, crystal structures, and magnetic properties of two cyano-bridged molecular assemblies: [CuII(phen)3]2{[CuII(phen)2]2[WV(CN)8]2}(ClO4)2·10H2O (phen = 1,10-phenanthroline) (1) and {[CuII(bpy)2]2[WV(CN)8]} {[CuII(bpy)2][WV(CN)8]}·4H2O (bpy = 2,2′-bipyridyl) (2). Compound 1 consists of cyano-bridged [CuII2WV2]2− molecular rectangles and isolated [CuII(phen)3]2+ complexes. The molecular structure of 2 reveals cyano-bridged trinuclear [CuII2WV]+ and dinuclear [CuIIWV]− ions. Magnetic interactions in 1 are interpreted in terms of the model of a tetranuclear moiety consisting of two ferromagnetic CuII−NC−WV units (J1 = +39(4) cm−1) interacting ant…

010405 organic chemistryStereochemistryChemistryCrystal structureCrystal structureMagnetic response[CHIM.MATE]Chemical Sciences/Material chemistry010402 general chemistry01 natural sciencesAntiferromagnetic coupling0104 chemical sciencesIonInorganic ChemistryCrystallographyFerromagnetismTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITYMagnetic propertiesMoleculeMoietyChemical synthesisPhysical and Theoretical ChemistryCyano bridged molecular assembliesDiimine
researchProduct

Water Dissociation of a Dinuclear Bis(3,5‐dimethylpyrazolyl)methane Copper(II) Complex: X‐ray Diffraction Structure, Magnetic Properties, and Charact…

2018

010405 organic chemistrychemistry.chemical_element010402 general chemistry01 natural sciencesCopperDissociation (chemistry)Antiferromagnetic couplingMethane0104 chemical sciencesInorganic ChemistryCrystallographychemistry.chemical_compoundchemistryX-ray crystallographyWater splittingEuropean Journal of Inorganic Chemistry
researchProduct

Magneto-structural correlations in asymmetric oxalato-bridged dicopper(II) complexes with polymethyl-substituted pyrazole ligands

2018

Two oxalato-bridged dinuclear copper(II) complexes, [{Cu(Hdmpz)3}2(μ-ox)](ClO4)2·2H2O (1) and [{Cu(Htmpz)3}2(μ-ox)](ClO4)2·2H2O (2) (Hdmpz = 3,5-dimethyl-1H-pyrazole and Htmpz = 3,4,5-trimethyl-1H-pyrazole), have been synthesized and structurally and magnetically characterized. The crystal structures of 1 and 2 consist of asymmetric bis-bidentate μ-oxalatodicopper(II) complex cations with two short [Cu–O = 1.976(2) (1) and 1.973(2) Å (2)] and two long copper–oxygen bonds [Cu–O = 2.122(2) (1) and 2.110(2) Å (2)]. The environment at each CuII ion in 1 and 2 is closer to the trigonal bipyramidal geometry than to the square pyramidal [τ = 0.633 (1) and 0.711 (2)]. The magnetic properties of 1 a…

010405 organic chemistrychemistry.chemical_elementCrystal structurePyrazole ligandsPyrazole010402 general chemistry01 natural sciencesCopperSquare pyramidal molecular geometryAntiferromagnetic coupling0104 chemical sciencesIonCrystallographychemistry.chemical_compoundTrigonal bipyramidal molecular geometrychemistryMaterials ChemistryPhysical and Theoretical Chemistry
researchProduct

Azido and thiocyanato bridged dinuclear Ni(II) complexes involving 8-aminoquinoline based Schiff base as blocking ligands: Crystal structures, ferrom…

2020

Abstract The use of two 8-aminoquinoline-based tridentate N3-donor rigid Schiff base ligands (L1 and L2) with Ni(II) in the presence of the pseudohalides, NaN3 and NaSCN results in the crystallization of the two novel Ni(II) dimers: [Ni2(L1)2(µ1,1′-N3)2(N3)2] (1) and [Ni2(L2)2(µ1,3-NCS)2(NCS)2] (2). Both complexes are centrosymmetric Ni(II) dimers where the Schiff base ligands coordinate the octahedral Ni(II) centres in a mer configuration with one terminal and two bridging pseudohalide ligands in the remaining positions. Complex 1 shows Ni(II) ions connected by a double µ1,1′-N3− bridge whereas in complex 2 the Ni(II) ions are connected by a double µ1,3-NCS− bridge. The magnetic properties…

8-AminoquinolineSchiff baseFerromagnetic material properties010405 organic chemistryCrystal structureAzido/ThiocyanatoNi(II)Crystal structure010402 general chemistry01 natural sciences0104 chemical scienceslaw.inventionIonInorganic ChemistrySchiff baseCrystallographychemistry.chemical_compoundFerromagnetismOctahedronchemistrylawFerromagnetismMaterials ChemistryPhysical and Theoretical ChemistryCrystallizationPolyhedron
researchProduct

Off-stoichiometry in Co2FeSi thin films sputtered from stoichiometric targets revealed by nuclear magnetic resonance

2009

Co2FeSi is predicted to be a half-metallic ferromagnet with an extraordinary high magnetic moment and Curie temperature. However, a low tunnel magneto-resistance ratio, a lower spin polarization and a lower magnetic moment were experimentally observed in thin film samples. Consequently, thin Co2FeSi films of different groups were studied using spin-echo nuclear magnetic resonance (NMR). NMR probes the local hyperfine fields of the active atoms, which strongly depend on the local environment. NMR is thus able to reveal the next neighbouring shells of the Co-59 nuclei in the Co2FeSi thin films. As expected, our NMR study shows the main resonance line corresponding to Co-59 nuclei in the L2(1)…

Acoustics and UltrasonicsMagnetic momentCondensed matter physicsSpin polarizationChemistryResonanceCondensed Matter PhysicsFerromagnetic resonanceSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsCondensed Matter::Materials ScienceNuclear magnetic resonanceSpin echoCurie temperatureCondensed Matter::Strongly Correlated ElectronsThin filmHyperfine structureJournal of Physics D: Applied Physics
researchProduct

[Mnii2(bpym)(H2O)8]4+ and [Miv(CN)8]4– (M = Mo and W) as building blocks in designing bpym- and cyanide-bridged bimetallic three-dimensional networks…

2002

One-pot reaction between the dinuclear [MnII2(bpym)(H2O)8]4+ complex and the mononuclear [MIV(CN)8]4− unit (M = Mo and W; bpym = 2,2′-bipyrimidine) in aqueous solution yields the novel heterobimetallic complexes of formula {(μ-bpym)[Mn(H2O)]2-(μ-NC)6M(CN)2} with M = Mo (1) and W (2). 1 and 2 are isostructural three-dimensional compounds where the manganese atoms are bridged by bisbidentate bpym and hexakismonodentate octacyanometalate units. Variable-temperature magnetic susceptibility data of 1 and 2 show the occurrence of a significant antiferromagnetic coupling between the high spin manganese(II) ions through bridging bpym (Jca. −1.1 cm−1, the exchange Hamiltonian being defined as H = −J…

Aqueous solutionCyanidechemistry.chemical_elementGeneral ChemistryManganeseMagnetic susceptibilityCatalysisAntiferromagnetic couplingchemistry.chemical_compoundCrystallographychemistryComputational chemistryMaterials ChemistryIsostructuralBimetallic stripNew Journal of Chemistry
researchProduct

Unique direct synthesis of cyanide-bridged Fe2Cu2 molecular squares by destruction of sodium nitroprusside

2009

Abstract The one-pot reaction of copper powder, sodium nitroprusside, ammonium thiocyanate and 2,2′-bipyridine (bpy) in acetonitrile solution at ambient conditions of air and water yields the novel heterometallic [Fe2Cu2(bpy)6(μ-CN)4(NCS)2]2[Fe(CN)5(NO)](NCS)2·5H2O complex 1, which has been structurally and magnetically characterized. The most prominent feature of this complex is the unique tetranuclear Fe 2 II Cu 2 II squares comprised [Cu(bpy)NCS]+ and [Fe(bpy)2]2+ corners with CN edges. The Cu⋯Cu and Fe⋯Fe separations are ∼6.72 and ∼7.73 A, respectively. The variable-temperature magnetic susceptibility study revealed that a very weak antiferromagnetic coupling is active between Cu(II) ce…

ChemistryCyanideInorganic chemistrychemistry.chemical_elementMagnetic susceptibilityCopperAntiferromagnetic couplingInorganic Chemistrychemistry.chemical_compoundCrystallographyMaterials ChemistrymedicineAmmonium thiocyanateSodium nitroprussidePhysical and Theoretical ChemistryAcetonitrilemedicine.drugInorganic Chemistry Communications
researchProduct