Search results for "Ferromagnetisme"

showing 2 items of 2 documents

Antiferromagnetic Interactions in Copper(II) µ-Oxalato Dinuclear Complexes: The Role of the Counterion

2018

We report the preparation, crystal structure determination, magnetic properties and DFT calculations of five oxalato-bridged dicopper(II) complexes of formula [Cu-2(bpy)(2-)(H2O)(2)(C2O4)](CF3SO3)(2) (1), [Cu-2(bpy)(2)(C2O4)](PF6)(2) (2), [Cu-2(bpy)(2)(C2O4)](ClO4)(2) (3), [Cu-2(bpy)(2)Cl-2(C2O4)]center dot H2O (4) and [Cu-2(bpy)(2)(NO2)(2)(C2O4)] (5) (bpy = 2,2'-bipyridine and C2O42-= oxalate). Compounds 1, 2, 4 and 5 crystallize in the monoclinic system and 3 crystallizes in the triclinic system. The oxalate ligands in 1-5 adopt the bis-bidentate coordination mode and the two bpy molecules act as terminal ligands. The coordination of the counterions and the surroundings of the copper(II) …

Dinuclear complexesMatériauxFerromagnetismechemistry.chemical_elementCrystal structure[CHIM.INOR]Chemical Sciences/Inorganic chemistryTriclinic crystal system010402 general chemistry01 natural sciencesOxalateInorganic Chemistrychemistry.chemical_compoundOxalatoMagnetic propertiesAntiferromagnetismMolecule[CHIM.COOR]Chemical Sciences/Coordination chemistryGénie des procédéschemistry.chemical_classificationCoure010405 organic chemistryPropietats magnètiquesCopper0104 chemical sciences3. Good healthCrystallographyDensity functional calculationschemistryFerromagnetismCounterionCopperMonoclinic crystal system
researchProduct

Emergence of the stripe-domain phase in patterned permalloy films

2016

The occurrence of stripe domains in ferromagnetic Permalloy (Py=Fe$_{20}$Ni$_{80}$) is a well known phenomenon which has been extensively observed and characterized. This peculiar magnetic configuration appears only in films with a thickness above a critical value ($d_{cr}$), which is strongly determined by the sputtering conditions (i.e. deposition rate, temperature, magnetic field). So far, $d_{cr}$ has usually been presented as the boundary between the homogeneous (H) and stripe-domains (SD) regime, respectively below and above $d_{cr}$. In this work we study the transition from the H to the SD regime in thin films and microstructured bridges of Py with different thicknesses. We find the…

PermalloyMaterials scienceMagnetoresistanceFerromagnetismeFOS: Physical sciences02 engineering and technology01 natural sciencesCondensed Matter::Materials ScienceSputteringPhase (matter)Mesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciencesMagnetoresistènciaThin filmFilmsMagnetic domains010302 applied physicsCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed matter physicsMagnetoresistanceCoercivity021001 nanoscience & nanotechnologyPermalloyMagnetic fieldFerromagnetismFerromagnetism0210 nano-technologyMagnetic domains; Permalloy; Films
researchProduct