Search results for "Fiber Laser"
showing 10 items of 200 documents
Wide wavelength-tunable passive mode-locked Erbium-doped fiber laser with a SESAM
2021
Abstract In this work we present a simple polarization-maintaining wavelength-tunable passive mode-locked Erbium-doped fiber laser with a semiconductor saturable absorber mirror (SESAM) as a mode locker. The cavity includes a Sagnac interferometer-based fiber optical loop mirror (FOLM) as a wide wavelength-tunable filter. Tunable mode-locking was experimentally achieved in the range of 1543.2 nm to 1569.5 nm by thermally adjustment of FOLM wavelength reflection. The output pulses have a repetition rate of 11.16 MHz with pulse duration about 0.9 ps. The experimental results were confirmed by numerical simulations.
Synthesis of optical pulses by use of similaritons.
2009
We propose and demonstrate experimentally a novel method for synthesizing chirp-free pulses of any desired temporal shape by means of chirp compensation and spectral filtering of optical Raman similaritons. The synthesized pulse shape is independent of the waveform, wavelength and energy of the initial pulses that are used for the similariton generation. Pulses are fully characterized by means of different techniques including cross-correlation and spectrum measurements, and the PICASO technique.
Multi-gigahertz repetition-rate-selectable passive harmonic mode locking of a fiber laser
2013
We demonstrate a passive harmonically mode-locked erbium-doped fiber laser that operates at selectable harmonics spanning from the 6th to the 928th, which corresponds to repetition rates ranging from 153 MHz to 22.2 GHz. The noteworthy laser output stability is attested by supermode suppression levels as large as 41 dB. The influence of a continuous wave background on harmonics stability is tested.
Actively mode-locked fibre ring laser based on in-fibre acousto-optic amplitude modulation
2011
Recent advances in the development of all-fibre amplitude modulators have led to the implementation of a series of different actively mode-locked fibre lasers [1–4]. In-fibre acousto-optic modulation based on intermodal coupling induced my a standing flexural acoustic wave permits the implementation of broad bandwidth (1.5 nm), high modulation depth (0.72), low-insertion-loss (0.75 dB) all-fibre amplitude modulators that operate in the MHz frequency range. The experimental characterization of a laser with the configuration depicted in Fig. 1 (a) as a function of the radio frequency voltage that controls the modulator (see Fig. 1 (b)), the length of the Erbium doped fibre (EDF), and the opti…
Relative phase locking of pulses in a passively mode-locked fiber laser
2003
In a passively mode-locked fiber ring laser, we report the experimental observation of relative phase locking of pulses in a wide variety of cases. Relative phase locking is observed in bunches of N pulses separated by more than 20 pulse widths as well as in close pulse pairs. In the latter case, the phase relationship between the two pulses is measured to be ±π/2, which is related to theoretical predictions formerly obtained from a Ginzburg-Landau distributed model. We have developed a simplified numerical model adapted to our laser, which keeps its essential features while significantly reducing the number of free parameters. The agreement with the experiment is excellent. © 2003 Optical …
Q -switched and modelocked all-fiber lasers based on advanced acousto-optic devices
2011
The interest in all-fiber lasers is stimulated by the inherent advantages they have over bulk lasers in aspects such as heat dissipation and robustness. The performance of Q-switched and modelocked fiber lasers can benefit enormously from the development of all-fiber configurations. A fiber laser with strictly all-fiber components can fulfil the requirements of mechanical stability, low maintenance, enhanced power efficiency, simplified assembly process, and low cost. In this framework, recent developments infiber acousto-optic devices are reviewed that have demonstrated new possibilities for actively Q-switched distributed feedback fiber lasers, modelocking lasers and doubly active Q-switc…
On the potential of 914 nm pumping of Nd:YVO4 for laser operation at 1064 nm
2011
1064 nm-Nd :YVO4 lasers were pumped at 808 nm and 914 nm. The comparative study shows that 914 nm-pumping is adapted for cw operation whereas 808 nm-pumping provides higher population inversion interesting for Q-switched operation.
Alignment-free, all-spliced fiber laser source for CARS microscopy based on four-wave-mixing
2012
An environmentally-stable low-repetition rate fiber oscillator is developed to produce narrow-bandwidth pulses with several tens of picoseconds duration. Based on this oscillator an alignment-free all-fiber laser for multi-photon microscopy is realized using in-fiber frequency conversion based on four-wave-mixing. Both pump and Stokes pulses for coherent anti-Stokes Raman scattering (CARS) microscopy are readily available from one fiber end, intrinsically overlapped in space and time, which drastically simplifies the experimental handling for the user. The complete laser setup is mounted on a home-built laser scanning microscope with small footprint. High-quality multimodal microscope image…
Actively mode-locked fiber ring laser by intermodal acousto-optic modulation
2010
We report an actively mode-locked fiber ring laser. A simple and low-insertion-loss acousto-optic modulator driven by standing flexural waves, which couples core-to-cladding modes in a standard single-mode optical fiber, is used as an active mechanism for mode locking. Among the remarkable features of the modulator, we mention its high modulation depth (72%), broad bandwidth (187 GHz), easy tunability in the optical wavelength, and low insertion losses (0.7 dB). The narrowest optical pulses obtained were of 95 ps time width, 21 mW peak power, repetition rate of 4.758 MHz, and 110 mW of pump power.
Characterization of fiber nonuniformities with ppm resolution using time-resolved in-fiber acousto-optics
2014
Time-resolved acousto-optic interaction using flexural waves enables the characterization of fiber nonuniformities along sections of about 1-2 m. A resolution better than 10 ppm of fiber diameter and core refractive index is demonstrated.