Search results for "Fiber lasers"

showing 10 items of 24 documents

High frequency microwave signal generation using dual-wavelength emission of cascaded DFB fiber lasers with wavelength spacing tunability

2010

[EN] A dual wavelength fiber laser source based on two cascaded phase-shifted fiber Bragg gratings is presented The gratings are written in an erbium-doped fiber each configuring the cavity of a distributed feedback fiber laser The spacing between lasing modes is controlled dynamically by the use of piezoelectric actuators A continuous tuning range of 5-724 pm of the wavelength difference which is equivalent to a photodetected 072-92 GHz range is obtained Efficient generation from the L to the W microwave and millimeter bands has been achieved by heterodyne photodetection of the dual-wavelength optical signal (C) 2010 Elsevier BV All rights reserved

Materials sciencePhysics::OpticsMicrowave generationPolarization-maintaining optical fiber02 engineering and technology7. Clean energyGraded-index fiberFiber lasers020210 optoelectronics & photonicsOpticsFiber Bragg gratingDual-wavelength laserFiber laserTEORIA DE LA SEÑAL Y COMUNICACIONES0202 electrical engineering electronic engineering information engineeringFiber Bragg gratingsDispersion-shifted fiberElectrical and Electronic EngineeringPhysical and Theoretical ChemistryPlastic optical fiberbusiness.industry020208 electrical & electronic engineeringLong-period fiber gratingAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsFiber optic sensorOptoelectronicsbusinessOptics Communications
researchProduct

Development of ultra-fast thulium-doped fiber lasers - Prospects for 2μm-nanophotonics.

2021

Developing highly coherent pulsed sources around the 2 µm wavelengthhas been a particularly dynamic field of research in the last couples of years,due to its numerous applications. In optical telecommunication, the wavelength rangearound 2 µm is one of the most promising solutions to increase the transmission capacitypast the current technological bottleneck. In this context, passively mode-lockedfiber lasers appear as a high potential solution for cheap laser sources, due to their veryhigh coherence and intrinsic compatibility with telecommunication systems.Passively mode-locked fiber lasers at 1,55 µm and their ultrafast dynamics is oneof the specialty of the ICB laboratory, and the aim i…

Fiber lasersSolitons dissipatifs[PHYS.PHYS.PHYS-OPTICS] Physics [physics]/Physics [physics]/Optics [physics.optics]ThuliumNanophotonicsNanophotoniqueSilicon microresonatorsDissipative solitonsDynamique ultrarapideRésonateurs siliciumUltrafast dynamicsLasers à fibre
researchProduct

High-repetition rate acoustic-induced Q-switched all-fiber laser

2005

We report a high repetition rate actively Q switched all fiber laser. The acousto optic interaction controls the cou pling between co propagating core and cladding modes and is used to modulate the optical losses of the cavity, which permits to perform active Q-switching. Using 1.4 m of 300 ppm Er-doped fiber and a maximum pump power of 120 mW, we have obtained up to 1 W peak power pulses, with a pulse repetition rate that can be continuously varied from 1 Hz to 120 kHz and a pulse width that changes from 70 ns to 2.2 μs.

Materials sciencebusiness.industryCiencias FísicasOptical communicationFísicaCladding modeCladding (fiber optics)LaserQ-switchingAtomic and Molecular Physics and Opticsfísica de los rayos láserElectronic Optical and Magnetic Materialslaw.inventionfiber lasersOpticslawFiber laserópticaQ switchingElectrical and Electronic EngineeringPhysical and Theoretical ChemistrybusinessUltrashort pulsePulse-width modulation
researchProduct

Influence of Cavity Loss Upon Performance of Q-Switched Erbium-Doped Fiber Laser

2013

Performance of an actively Q-switched erbium-doped fiber laser in function of intracavity loss is discussed. We show experimentally and theoretically (employing a distributed model that takes into account two contra-propagating laser waves) that the laser performance strongly depends on the intracavity loss of different kinds. We reveal in particular that the dominant source of smaller than expected pulse energy is the loss via excited-state absorption, inherent in erbium-doped fibers. We also discuss the other important processes involved in active Q-switching, such as passive losses and residual active fiber charge, the impact of which is clarified by a straightforward comparison of the m…

Materials sciencebusiness.industryPhysics::OpticsCharge (physics)LaserResidualAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materialslaw.inventionOpticslawFiber laserFiberLaser power scalingElectrical and Electronic EngineeringbusinessAbsorption (electromagnetic radiation)Erbium doped fiber lasersIEEE Photonics Technology Letters
researchProduct

Tunable Dual-Wavelength Thulium-Doped Fiber Laser Based on FBGs and a Hi-Bi FOLM

2017

A tunable dual-wavelength thulium doped fiber laser is demonstrated experimentally. For the first time for the 2- $\mu \text{m}$ wavelength band we propose the independent tuning of the generated laser lines based on fiber Bragg gratings and the use of a Hi-Bi fiber optic loop mirror for the fine adjustment of the cavity losses to obtain stable dual-wavelength operation. Dual-wavelength laser generation with the laser lines separation in the range from 0.3 to 6.5 nm is obtained. The laser emission exhibits an optical signal-to-noise ratio better than 56 dB. Improved stability with output power fluctuations less than 1 dB is observed in dual-wavelength generation with equal power of lines.

Materials sciencePhysics::Optics02 engineering and technology01 natural scienceslaw.inventionVertical-cavity surface-emitting laser010309 optics020210 optoelectronics & photonicsOpticsFiber Bragg gratinglawFiber laserWavelength tuning0103 physical sciencesFiber Bragg gratings0202 electrical engineering electronic engineering information engineeringLaser power scalingElectrical and Electronic EngineeringFiber LasersDistributed feedback laserbusiness.industrySagnac interferometersFar-infrared laserLaserUNESCO::FÍSICA::Óptica ::Fibras ópticasAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic Materials:FÍSICA::Óptica ::Fibras ópticas [UNESCO]OptoelectronicsbusinessTunable laserIEEE Photonics Technology Letters
researchProduct

Q-switching of an all-fiber ring laser based on in-fiber acousto-optic bandpass modulator2017

2017

Active Q-switching of an all-fiber ring laser utilizing a novel in-fiber acousto-optic tunable bandpass filter (AOTBF) is reported. The transmission characteristics of the AOTBF are controlled by amplitude modulation of the acoustic wave; the device exhibits a 3-dB power insertion loss, 0.91-nm optical bandwidth, and 28-dB nonresonant light suppression. Cavity loss modulation is achieved by full acousto-optic mode re-coupling cycle induced by traveling flexural acoustic waves. When the acoustical signal is switched on, cavity losses are reduced, and then, laser emission is generated. In addition, by varying the acoustic wave frequency, a wide wavelength tuning range of 30.7 nm is achieved f…

Acousto-optic modulationAcousto-optic filters:FÍSICA::Óptica ::Fibras ópticas [UNESCO]Fiber opticsBandpass filtersUNESCO::FÍSICA::Óptica ::Fibras ópticasFiber Lasers
researchProduct

Spatiotemporal pulse shaping with multimode nonlinear guided waves

2018

We experimentally and theoretically investigate complex temporal pulse reshaping that accompanies Kerr beam self-cleaning in multimode optical fibers. We also study the output beam shape dependence on initial conditions.

Optical fiberMaterials scienceand opticsPhysics::OpticsComputer Science::Human-Computer Interaction02 engineering and technologynonlinear fiber optics01 natural scienceslaw.invention010309 opticsOpticslawFiber laser0103 physical sciencesatomic and molecular physicsoptical and magnetic materialsComputingMilieux_MISCELLANEOUS[PHYS.PHYS.PHYS-OPTICS]Physics [physics]/Physics [physics]/Optics [physics.optics]Multi-mode optical fiberbusiness.industryelectronic021001 nanoscience & nanotechnologyPulse shapingPulse (physics)fiber lasersNonlinear systempulse propagation and optical solitonstransverse effectsPhysics::Accelerator Physicsfiber lasers; nonlinear fiber optics; pulse propagation and optical solitons; transverse effects; electronic optical and magnetic materials; atomic and molecular physics and opticsPhotonics0210 nano-technologybusinessBeam (structure)
researchProduct

Long- and short-term stability of all polarization-maintaining thulium doped passively mode-locked fiber lasers with emission wavelengths at 1.95 µm …

2023

In this work, we compare the operation of a passively modelocked polarization-maintaining emission in two thulium-doped fiber lasers pumped at 1561 nm, with emission at wavelengths of 1.951 μm in one case and 2.07 μm in the other. We obtained a sequence of light pulses at 15.6 MHz, whose temporal width was 81 ps at 1.95 μm, and a sequence of light pulses at 13.1 MHz, whose temporal width was 94 ps at 2.07 μm. Finally, we also measured the long-term stability of this setup during a 24-h operation, as well as the short-term stability in a simulated harsh environment. The results confirm the superior performance of fiber laser systems with a fully polarization-maintaining design.

Fluid Flow and Transfer Processespassive mode-lockingProcess Chemistry and TechnologyPOLARIZACIONGeneral EngineeringFísicaÒpticathulium doped fibersfiber lasersComputer Science ApplicationsFIBRAS DOPADAS CON TULIOpolarization-maintainingLASER DE FIBRAGeneral Materials ScienceInstrumentation
researchProduct

Application of WGM Resonances to the Measurement of the Temperature Increment of Ho and Ho-Yb Doped Optical Fibers Pumped at 1125 and 975 nm

2021

Optical fiber characterization using whispering gallery mode resonances of the fiber itself has been demonstrated to be a powerful technique. In this work, we exploit the thermal sensitivity of whispering gallery mode resonances to characterize the pump-induced temperature increment in holmium doped and holmium-ytterbium codoped optical fibers. The technique relies on the measurement of the resonances’ wavelength shift due to temperature variation as a function of the pump power. Holmium doped fibers were pumped to the second excited level 5I6 of the Ho3+ ion using a laser diode at 1125 nm and ytterbium-holmium codoped fibers to the 2F5/2 level of the Yb3+ ion by a laser diode at 975 nm. Ou…

YtterbiumOptical fiberMaterials sciencechemistry.chemical_element02 engineering and technologylcsh:Chemical technology01 natural sciencesBiochemistrydoped fibersAnalytical Chemistrylaw.invention010309 optics020210 optoelectronics & photonicslaw2 μm fiber lasers:FÍSICA [UNESCO]0103 physical sciences0202 electrical engineering electronic engineering information engineeringlcsh:TP1-1185FiberElectrical and Electronic Engineeringwhispering gallery modesInstrumentationLaser diodebusiness.industryCommunicationDopingUNESCO::FÍSICAytterbium2 um fiber lasersAtomic and Molecular Physics and OpticschemistryExcited stateOptoelectronicsfiber characterizationholmiumWhispering-gallery waveHolmiumbusiness
researchProduct

Flat supercontinuum generation pumped by amplified noise-like pulses from a figure-eight erbium-doped fiber laser

2017

The conditions to obtain noise-like pulses (NLPs) from a figure-eight fiber laser (F8L) and their application for supercontinuum (SC) generation in the anomalous dispersion regime are reported. The F8L is designed to remove the undesired low-intensity background radiation from pulse emission, generating NLPs with a 3 dB spectral bandwidth of 17.43 nm at the fundamental repetition frequency of 0.8 MHz. After amplification, NLPs reach a maximum average power of 9.2 mW and 123.32 nm spectral bandwidth. By controlling the amplifier pump power, flat SC generation is demonstrated through both a 800 m long spool of SMF-28 fiber and a piece of 5 m long highly nonlinear optical fiber. The results de…

Materials sciencePhysics and Astronomy (miscellaneous)business.industryAmplifierBandwidth (signal processing)02 engineering and technology01 natural sciencesNonlinear optical fiberUNESCO::FÍSICA::Óptica ::Fibras ópticasSupercontinuum010309 optics020210 optoelectronics & photonics:FÍSICA::Óptica ::Fibras ópticas [UNESCO]Fiber laser0103 physical sciences0202 electrical engineering electronic engineering information engineeringOptoelectronicsbusinessInstrumentationErbium doped fiber laserssupercontinuum generationnonlinear effects
researchProduct