Search results for "Fibration"

showing 10 items of 35 documents

The geometry of N=3 AdS4 in massive IIA

2018

The geometry of the ${\cal N} = 3$, SO(4)--invariant, AdS$_4$ solution of massive type IIA supergravity that uplifts from the ${\cal N} = 3 $ vacuum of $D=4$ ${\cal N} = 8$ dyonic ISO(7) supergravity is investigated. Firstly, a $D=4$, SO(4)--invariant restricted duality hierarchy is constructed and used to uplift the entire, dynamical SO(4)--invariant sector to massive type IIA. The resulting consistent uplift formulae are used to obtain a new local expression for the ${\cal N} = 3 $ AdS$_4$ solution in massive IIA and analyse its geometry. Locally, the internal $S^6$ geometry corresponds to a warped fibration of $S^2$ and a hemisphere of $S^4$. This can be regarded as a warped generalisati…

High Energy Physics - TheoryNuclear and High Energy PhysicsSettore FIS/02 - Fisica Teorica Modelli E Metodi MatematiciSuperstring VacuaFOS: Physical sciencesDuality (optimization)AdS-CFT Correspondence Flux compactifications Supergravity Models Superstring VacuaGeometryType (model theory)AdS-CFT Correspondence01 natural sciencesTwistor theoryAdS-CFT correspondencesupergravity modelsFlux compactifications0103 physical sciences010306 general physicsPhysicsSpinor010308 nuclear & particles physicsPhysicsSupergravityFibrationFísicaAdS/CFT correspondenceHigh Energy Physics - Theory (hep-th)Killing spinorsuperstring vacuaflux compactificationsSupergravity Models
researchProduct

Algebraic models of the Euclidean plane

2018

We introduce a new invariant, the real (logarithmic)-Kodaira dimension, that allows to distinguish smooth real algebraic surfaces up to birational diffeomorphism. As an application, we construct infinite families of smooth rational real algebraic surfaces with trivial homology groups, whose real loci are diffeomorphic to $\mathbb{R}^2$, but which are pairwise not birationally diffeomorphic. There are thus infinitely many non-trivial models of the euclidean plane, contrary to the compact case.

Mathematics - Differential GeometryPure mathematicsaffine complexificationLogarithmReal algebraic model01 natural sciencesMathematics - Algebraic GeometryMathematics::Algebraic Geometry0103 physical sciencesEuclidean geometryAlgebraic surfaceaffine surfaceFOS: Mathematics0101 mathematicsInvariant (mathematics)Algebraic numberMathematics::Symplectic GeometryAlgebraic Geometry (math.AG)MathematicsAlgebra and Number Theory010102 general mathematics[MATH.MATH-AG] Mathematics [math]/Algebraic Geometry [math.AG]q-homology planesbirational diffeomorphismDifferential Geometry (math.DG)[MATH.MATH-DG]Mathematics [math]/Differential Geometry [math.DG]rational fibrationPairwise comparison010307 mathematical physicsGeometry and TopologyDiffeomorphism[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]14R05 14R25 14E05 14P25 14J26[MATH.MATH-DG] Mathematics [math]/Differential Geometry [math.DG]Singular homology
researchProduct

On the geometric structure of the class of planar quadratic differential systems

2002

In this work we are interested in the global theory of planar quadratic differential systems and more precisely in the geometry of this whole class. We want to clarify some results and methods such as the isocline method or the role of rotation parameters. To this end, we recall how to associate a pencil of isoclines to each quadratic differential equation. We discuss the parameterization of the space of regular pencils of isoclines by the space of its multiple base points and the equivariant action of the affine group on the fibration of the space of regular quadratic differential equations over the space of regular pencils of isoclines. This fibration is principal, with a projective group…

Nonlinear systemGeometric analysisApplied MathematicsAffine groupMathematical analysisUniversal geometric algebraFibrationDiscrete Mathematics and CombinatoricsEquivariant mapQuadratic differentialPencil (mathematics)MathematicsQualitative Theory of Dynamical Systems
researchProduct

Affine Surfaces With a Huge Group of Automorphisms

2013

We describe a family of rational affine surfaces S with huge groups of automorphisms in the following sense: the normal subgroup Aut(S)alg of Aut(S) generated by all algebraic subgroups of Aut(S) is not generated by any countable family of such subgroups, and the quotient Aut(S)/Aut(S)alg cointains a free group over an uncountable set of generators.

Normal subgrouprational fibrationsautomorphismsGroup (mathematics)General Mathematics010102 general mathematicsAutomorphism01 natural sciences[ MATH.MATH-AG ] Mathematics [math]/Algebraic Geometry [math.AG]CombinatoricsMathematics::LogicMathematics - Algebraic GeometryMathematics::Group Theory0103 physical sciencesFree groupCountable setUncountable set[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]010307 mathematical physics0101 mathematicsAlgebraic number14R25 14R20 14R05 14E05affine surfacesQuotientMathematicsInternational Mathematics Research Notices
researchProduct

On Fibrations Between Internal Groupoids and Their Normalizations

2018

We characterize fibrations and $$*$$ -fibrations in the 2-category of internal groupoids in terms of the comparison functor from certain pullbacks to the corresponding strong homotopy pullbacks. As an application, we deduce the internal version of the Brown exact sequence for $$*$$ -fibrations from the internal version of the Gabriel–Zisman exact sequence. We also analyse fibrations and $$*$$ -fibrations in the category of arrows and study when the normalization functor preserves and reflects them. This analysis allows us to give a characterization of protomodular categories using strong homotopy kernels and a generalization of the Snake Lemma.

Normalization (statistics)Pure mathematicsInternal groupoid Fibration Strong h-pullback Protomodular categoryGeneral Computer ScienceFibrationSnake lemmaStrong h-pullbackMathematics::Algebraic Topology01 natural sciencesTheoretical Computer ScienceMathematics::Algebraic GeometryMathematics::K-Theory and HomologyMathematics::Category Theory0103 physical sciences0101 mathematicsMathematics::Symplectic GeometryMathematicsExact sequenceInternal groupoidAlgebra and Number TheoryFunctorHomotopy010102 general mathematicsFibrationInternal versionSettore MAT/02 - AlgebraProtomodular categoryTheory of computation010307 mathematical physicsApplied Categorical Structures
researchProduct

A note on strong protomodularity, actions and quotients

2013

Abstract In order to study the problems of extending an action along a quotient of the acted object and along a quotient of the acting object, we investigate some properties of the fibration of points. In fact, we obtain a characterization of protomodular categories among quasi-pointed regular ones, and, in the semi-abelian case, a characterization of strong protomodular categories. Eventually, we return to the initial questions by stating the results in terms of internal actions.

Pure mathematicsAlgebra and Number Theory010102 general mathematicsObject (grammar)FibrationMathematics - Category Theory0102 computer and information sciencesCharacterization (mathematics)01 natural sciencesSettore MAT/02 - AlgebraAction (philosophy)010201 computation theory & mathematicsMathematics::Category TheoryFOS: MathematicsOrder (group theory)Category Theory (math.CT)0101 mathematicsQuotientMathematics
researchProduct

On the slope of hyperelliptic fibrations with positive relative irregularity

2016

Let $f:\, S \to B$ be a locally non-trivial relatively minimal fibration of hyperelliptic curves of genus $g\geq 2$ with relative irregularity $q_f$. We show a sharp lower bound on the slope $\lambda_f$ of $f$. As a consequence, we prove a conjecture of Barja and Stoppino on the lower bound of $\lambda_f$ as an increasing function of $q_f$ in this case, and we also prove a conjecture of Xiao on the ampleness of the direct image of the relative canonical sheaf if $\lambda_f<4$.

Pure mathematicsConjectureApplied MathematicsGeneral MathematicsImage (category theory)010102 general mathematicsFibrationFunction (mathematics)Lambda01 natural sciencesUpper and lower boundsMathematics::Algebraic GeometryGenus (mathematics)0103 physical sciencesSheaf010307 mathematical physics0101 mathematicsMathematicsTransactions of the American Mathematical Society
researchProduct

FREDHOLM THEORY FOR DEGENERATE PSEUDODIFFERENTIAL OPERATORS ON MANIFOLDS WITH FIBERED BOUNDARIES

2001

We consider the calculus Ψ*,* de(X, deΩ½) of double-edge pseudodifferential operators naturally associated to a compact manifold X whose boundary is the total space of a fibration. This fits into the setting of boundary fibration structures, and we discuss the corresponding geometric objects. We construct a scale of weighted double-edge Sobolev spaces on which double-edge pseudodifferential operators act as bounded operators, characterize the Fredholm elements in Ψ*,* de(X) by means of the invertibility of an appropriate symbol map, and describe a K-theoretical formula for the Fredholm index extending the Atiyah–Singer formula for closed manifolds. The algebra of operators of order (0, 0) i…

Pure mathematicsExact sequenceApplied MathematicsMathematical analysisFibrationFredholm integral equationOperator theoryFredholm theoryManifoldSobolev spacesymbols.namesakeMathematics::K-Theory and HomologyBounded functionsymbolsAnalysisMathematicsCommunications in Partial Differential Equations
researchProduct

The snail lemma for internal groupoids

2019

Abstract We establish a generalized form both of the Gabriel-Zisman exact sequence associated with a pointed functor between pointed groupoids, and of the Brown exact sequence associated with a fibration of pointed groupoids. Our generalization consists in replacing pointed groupoids with groupoids internal to a pointed regular category with reflexive coequalizers.

Pure mathematicsExact sequenceLemma (mathematics)Internal groupoid Snail lemma Fibration Snake lemmaAlgebra and Number TheoryFunctorMathematics::Operator Algebras010102 general mathematicsFibrationMathematics - Category Theory01 natural sciences18B40 18D35 18G50Settore MAT/02 - AlgebraMathematics::K-Theory and HomologyMathematics::Category Theory0103 physical sciencesFOS: MathematicsCategory Theory (math.CT)Regular category010307 mathematical physics0101 mathematicsMathematics::Symplectic GeometryMathematics
researchProduct

Fibred-categorical obstruction theory

2022

Abstract We set up a fibred categorical theory of obstruction and classification of morphisms that specialises to the one of monoidal functors between categorical groups and also to the Schreier-Mac Lane theory of group extensions. Further applications are provided to crossed extensions and crossed bimodule butterflies, with in particular a classification of non-abelian extensions of unital associative algebras in terms of Hochschild cohomology.

Pure mathematicsFibrationCohomology Fibration Category of fractions Schreier-Mac Lane theorem Obstruction theory Crossed extension Hochschild cohomologyFibered knotMathematics::Algebraic TopologyCohomologyHochschild cohomologyMorphismMathematics::K-Theory and HomologyMathematics::Category TheoryCategorical variableMathematicsSchreier-Mac Lane theoremAlgebra and Number TheoryFunctorCategory of fractionsGroup (mathematics)Crossed extensionSettore MAT/01 - Logica MatematicaObstruction theoryCohomologyCategory of fractions; Cohomology; Crossed extension; Fibration; Hochschild cohomology; Obstruction theory; Schreier-Mac Lane theoremSettore MAT/02 - AlgebraBimoduleObstruction theory
researchProduct