Search results for "Fibre-reinforced plastic"

showing 10 items of 75 documents

Analytical stress-strain law of FRP confined masonry in compression: Literature review and design provisions

2017

Abstract The use of Fibre Reinforced Polymer (FRP) wraps has become common in practical applications to retrofit existing columns with poor structural features. Wrapping the member with one or more FRP sheets makes it possible to induce confinement action and enhance strength and ductility. This application has been widely studied and adopted in reinforced concrete members for about twenty years, while its suitability to masonry columns and piers has been investigated during the last decade. The results of several studies were summarized in different design expressions for calculating effective confinement pressure, ultimate compressive stress and strain, and the overall trend of the stress…

Materials scienceConstitutive equation0211 other engineering and technologiesCeramics and Composite02 engineering and technologyIndustrial and Manufacturing EngineeringRetrofit021105 building & constructionMechanics of MaterialComposite materialDuctilityCompression; FRP confinement; Masonry; Retrofit; Ceramics and Composites; Mechanics of Materials; Mechanical Engineering; Industrial and Manufacturing EngineeringMasonrybusiness.industryMechanical EngineeringStress–strain curveCompressionStructural engineeringFibre-reinforced plasticMasonry021001 nanoscience & nanotechnologyCompression (physics)Strength of materialsSettore ICAR/09 - Tecnica Delle CostruzioniCompressive strengthMechanics of MaterialsCeramics and CompositesFRP confinement0210 nano-technologybusiness
researchProduct

Finite element analysis of the out-of-plane behavior of FRP strengthened masonry panels

2017

Abstract In the present study a numerical model is proposed for the response of out-of-plane loaded calcarenite masonry walls strengthened with vertical CFRP strips applied on the substrate by means of epoxy resin. A simplified structural scheme is considered consisting in a beam fixed at one end, subjected to constant axial load and out-of-plane lateral force monotonically increasing. Two different constraint conditions are taken into account: in the first one, the panel is assumed free to rotate at the top end while, in the second one, the rotation is restrained. Three-dimensional finite elements are used for the calcarenite parts and an equivalent constitutive law available in the litera…

Materials scienceConstitutive equationShell (structure)FRP-masonry interfaceCeramics and CompositeFinite element modeling; FRP strengthening; FRP-masonry interface; Masonry panels; Out-of-plane behavior; Ceramics and Composites; Mechanics of Materials; Mechanical Engineering; Industrial and Manufacturing Engineering02 engineering and technology010402 general chemistry01 natural sciencesIndustrial and Manufacturing EngineeringFRP strengtheningMechanics of MaterialMasonry panelsComposite materialFinite element modelingMasonry panelbusiness.industryMechanical EngineeringLinear elasticityStructural engineeringMasonryFibre-reinforced plastic021001 nanoscience & nanotechnologyStrength of materialsFinite element method0104 chemical sciencesSettore ICAR/09 - Tecnica Delle CostruzioniMechanics of MaterialsCeramics and Composites0210 nano-technologybusinessBeam (structure)Out-of-plane behavior
researchProduct

Simultaneous measurement of temperature and strain in glass fiber/epoxy composites by embedded fiber optic sensors: I. Cure monitoring

2007

In this paper (Part I) the use of fiber optic sensors for real-time monitoring of the cure kinetics of GFRP composites is explored. The proposed sensing system allows the simultaneous measurement of both temperature and strain by monitoring the change in reflected wavelength from two coupled fiber Bragg grating (FBG) sensors that have been embedded into the composite laminate. Instrumented GFRP laminates with 12, 18 and 24 reinforcing plies, respectively, were prepared by means of the vacuum bagging technique. Samples were cured in a thermally controlled oven at 80 degrees C and 30 kPa for 240 min (isothermal stage) and then cooled down to ambient temperature by turning off the heating sour…

Materials scienceFiber Bragg grating (FBG) sensorsComposite numberGlass fiberFiber Bragg gratingComposite cure monitoringSettore ING-IND/12 - Misure Meccaniche E TermicheSITUTemperature mesurementGeneral Materials ScienceCure monitoringElectrical and Electronic EngineeringComposite materialBRAGG GRATING SENSORSCivil and Structural EngineeringOptical fiber sensorEpoxyFibre-reinforced plasticCondensed Matter PhysicsTHERMOSETFiber Bragg grating (FBG) sensors; Optical fiber sensor; Composite cure monitoring; Strain measurement; Temperature mesurementAtomic and Molecular Physics and OpticsMechanics of MaterialsFiber optic sensorvisual_artSignal Processingvisual_art.visual_art_mediumEPOXY-RESINStrain measurementStructural health monitoringFIBRE/EPOXY COMPOSITESSYSTEM
researchProduct

Discontinuous FRP-Confinement of Masonry Columns

2020

Recent seismic events, all over the world, demonstrated that masonry constructions are prone to brittle collapses when shear or compression capacity is reached. It is clear that, in many real cases, masonry columns need to be strengthened for enhancing their load-carrying capacity and to develop a more ductile response. The Fiber Reinforced Polymers (FRPs) confinement of masonry columns is a well-known technique that may produce these advantages. Unfortunately, full-wrapping insulates the column from the environment; so interstitial humidity can easily occur and cause the acceleration of the masonry's decay. In order to prevent it, partial-confinement is commonly assessed instead of total-j…

Materials scienceGeography Planning and Development0211 other engineering and technologies020101 civil engineering02 engineering and technologySTRIPS0201 civil engineeringlaw.inventionlcsh:HT165.5-169.9BrittlenesslawStrain gaugediscontinuous confinementParametric statistics021110 strategic defence & security studiesanalysis-oriented modelbusiness.industryStructural engineeringEpoxyBuilding and Constructionlcsh:City planningFibre-reinforced plasticMasonrytestingUrban StudiesShear (geology)lcsh:TA1-2040visual_artconfinementvisual_art.visual_art_mediumlcsh:Engineering (General). Civil engineering (General)businessFRP
researchProduct

Effect of curing time on the performances of hybrid/mixed joints

2013

Abstract The aim of this work is the study of a mixed method used for the joining of aluminum alloys with glass reinforced polymer’s substrates (in the next GFRP). In particular, the technique of self-piercing riveting (in the next SPR) was applied on a co-cured joint in order to evaluate the influence of the time of inserting the rivet on the mechanical behavior of the mixed joints. Three different joints were realized: adhesive by co-curing technique, mechanical by self piercing riveting (in the next SPR) and a mixed one in which the joining techniques (i.e. adhesive and mechanical) were combined. In particular, to determine the optimum time to insert the rivet, three different times from…

Materials scienceHybrid; Adhesion; Cure behavior; E. Joints/joining; self piercing rivetingMechanical EngineeringEpoxyFibre-reinforced plasticIndustrial and Manufacturing EngineeringSettore ING-IND/22 - Scienza E Tecnologia Dei MaterialiLap jointNatural rubberMechanics of Materialsvisual_artCeramics and Compositesvisual_art.visual_art_mediumRivetOil pressureAdhesiveHybrid AdhesionCure behaviorJoints/joiningSelf piercing rivetingComposite materialCuring (chemistry)Composites Part B: Engineering
researchProduct

Stress field model for strengthening of shear-flexure critical RC beams

2017

A model for the design of shear-flexure critical reinforced concrete elements strengthened with fiber-reinforced polymer (FRP) sheets and plates is presented. The model is based on the stress field approach and the equilibrium method and accounts for the different failure modes of FRP, focusing on the debonding of the FRP from the concrete surface. The efficiency of the model in the strength assessment of beams reinforced with FRP by the prediction of the shear-flexure capacity is checked by corroborating the results of several experimental tests found in the literature. Moreover, the presented model's capacity to reproduce experimental behavior is compared with the formulations suggested b…

Materials scienceMechanical EngineeringCeramics and Composites Civil and Structural Engineering Building and Construction Mechanics of Materials Mechanical Engineering.0211 other engineering and technologies020101 civil engineeringCeramics and Composite02 engineering and technologyBuilding and ConstructionFibre-reinforced plasticReinforced concreteStrength of materials0201 civil engineeringStress fieldSettore ICAR/09 - Tecnica Delle CostruzioniShear (geology)Mechanics of Materials021105 building & constructionCeramics and CompositesMechanics of MaterialComposite materialCivil and Structural Engineering
researchProduct

Shear Capacity Model with Variable Orientation of Concrete Stress Field for RC Beams Strengthened by FRP with Different Inclinations

2021

A design-oriented analytical model able to evaluate the shear capacity of reinforced concrete (RC) beams strengthened with fiber-reinforced polymer (FRP) sheets or strips oriented in any direction is proposed. The formulation of the model is based on the variable-inclination stress-field approach, aiming to extend the provisions of current European standards to beams strengthened in shear using FRP. The main novelty of the model lies in taking into account the possible different inclination of steel stirrup and FRP reinforcement in determining the orientation of a compressed concrete stress field, and in shear strength evaluation, overcoming the approximation of the known models with variab…

Materials scienceMechanical EngineeringInclined FRP0211 other engineering and technologies020101 civil engineeringStress field02 engineering and technologyBuilding and ConstructionSTRIPSFibre-reinforced plasticReinforced concreteVariable inclination0201 civil engineeringlaw.inventionStress fieldSettore ICAR/09 - Tecnica Delle CostruzioniFRP strengtheningMechanics of MaterialslawOrientation (geometry)021105 building & constructionCeramics and CompositesComposite materialCivil and Structural EngineeringShear capacityJournal of Composites for Construction
researchProduct

A methodology for the rapid characterization of Mode II delamination fatigue threshold in FRP composites

2019

Abstract A new methodology to measure the Mode II interlaminar fracture in fatigue for FRP composites is developed. The proposed methodology uses a Modified Transvers Crack Tensile (MTCT) specimen and is able to characterize the near threshold behavior in a robust, easier and significantly faster way than standard procedures. Analytical formulae, able to link the crack growth rate to the load or strain amplitudes, were found and verified, and their importance was explained, in particular, for what concerns the characterisation of the near threshold behavior. Experiments were performed both in load and strain control, while the delamination growth was monitored using different techniques inc…

Materials scienceParis law0211 other engineering and technologies02 engineering and technologySettore ING-IND/14 - Progettazione Meccanica E Costruzione Di MacchineThermoelastic damping0203 mechanical engineeringMaterials Science(all)Ultimate tensile strengthGeneral Materials ScienceComposite materialMode II fracture toughneFatigue021101 geological & geomatics engineeringMode II fracture toughnessMechanical EngineeringFibre reinforced compositeMode (statistics)Transverse crack tensile specimenFibre-reinforced plasticNear threshold020303 mechanical engineering & transports/dk/atira/pure/subjectarea/asjc/2500Mechanics of MaterialsCompatibility (mechanics)/dk/atira/pure/subjectarea/asjc/2200/2210Fibre reinforced compositesIndustrial material/dk/atira/pure/subjectarea/asjc/2200/2211
researchProduct

Copper coated carbon fiber reinforced plastics for high and ultra high vacuum applications

2014

We have used copper-coated carbon fiber reinforced plastic (CuCFRP) for the construction of high and ultra-high vacuum recipients. The vacuum performance is found to be comparable to typical stainless steel used for this purpose. In test recipients we have reached pressures of 2E-8 mbar and measured a desorption rate of 1E-11 mbar*liter/s/cm^2; no degradation over time (2 years) has been found. Suitability for baking has been found to depend on the CFRP production process, presumably on the temperature of the autoclave curing. Together with other unique properties of CuCFRP such as low weight and being nearly non-magnetic, this makes it an ideal material for many high-end vacuum application…

Materials sciencePhysics - Instrumentation and DetectorsUltra-high vacuumFOS: Physical scienceschemistry.chemical_elementInstrumentation and Detectors (physics.ins-det)Fibre-reinforced plasticCondensed Matter Physics7. Clean energyCopperSurfaces Coatings and FilmschemistryDesorptionCopper coatingVacuum chamberComposite materialInstrumentationCuring (chemistry)
researchProduct

Robustness of Empirical Vibration Correlation Techniques for Predicting the Instability of Unstiffened Cylindrical Composite Shells in Axial Compress…

2020

Thin-walled carbon fiber reinforced plastic (CFRP) shells are increasingly used in aerospace industry. Such shells are prone to the loss of stability under compressive loads. Furthermore, the instability onset of monocoque shells exhibits a pronounced imperfection sensitivity. The vibration correlation technique (VCT) is being developed as a nondestructive test method for evaluation of the buckling load of the shells. In this study, accuracy and robustness of an existing and a modified VCT method are evaluated. With this aim, more than 20 thin-walled unstiffened CFRP shells have been produced and tested. The results obtained suggest that the vibration response under loads exceeding 0.25 of …

Materials sciencePolymers and Plastics020101 civil engineering02 engineering and technologyMonocoqueInstabilityArticle0201 civil engineeringlcsh:QD241-441lcsh:Organic chemistry0203 mechanical engineeringRobustness (computer science)polymer compositebucklingnatural frequenciesvibration correlation techniqueCritical loadbusiness.industryGeneral ChemistryStructural engineeringTest methodFibre-reinforced plasticVibration020303 mechanical engineering & transportsBucklingbusinessimperfectionPolymers
researchProduct