Search results for "Fibre-reinforced plastic"
showing 10 items of 75 documents
Model of delamination propagation in brittle-matrix composites under cyclic loading
2001
A model of interlaminar fatigue crack growth based on damage accumulation ahead of the crack is proposed. Linear cumulative assumption is used for damage estimation, and a quadratic failure criterion is applied for complex interlaminar loading. Model parameters are determined from mode I and mode II fatigue tests, and used to predict mixed-mode delamination propagation rate. Comparison of theoretical prediction with mixed-mode test results for different brittle graphite FRP at several mode- and load ratios show reasonable agreement.
Mechanical properties of pultruded glass fiber reinforced plastic after freeze–thaw cycling
2012
The use of pultruded fiber-reinforced plastics in civil infrastructure requires the long-term prediction of their mechanical properties, which should be based on understanding and estimating the processes in the structure under action of aggressive environmental factors: humidity and freeze–thaw cycles. This article reports on results of short-term exposure to severe freeze–thaw cycling in the temperature range from –30°C to 20°C of polyester-based glass fiber reinforced plastic both dry and wet. The effect of freeze–thaw cycling of flat specimens cut from I-beam pultruded profile was estimated by use of three-point-bending tests and dilatometric investigation in the temperature range from…
2019
In this study, the structural behavior of small-scale wood beams externally strengthened with various fiber strengthened polymer (FRP) composites (i.e., flax FRP (FFRP), basalt FRP (BFRP), E-glass FRP (“E” stands for electrical resistance, GFRP) and their hybrid FRP composites (HFRP) with different fiber configurations) were investigated. FRP strengthened wood specimens were tested under bending and the effects of different fiber materials, thicknesses and the layer arrangements of the FRP on the flexural behavior of strengthened wood beams were discussed. The beams strengthened with flax FRP showed a higher flexural loading capacity in comparison to the beams with basalt FRP. Flax FRP prov…
Matrix and Filler Recycling of Carbon and Glass Fiber-Reinforced Polymer Composites: A Review
2021
Fiber-reinforced polymers (FRPs) are low-density, high-performance composite materials, which find important applications in the automotive, aerospace, and energy industry, to only cite a few. With the increasing concerns about sustainability and environment risks, the problem of the recycling of such complex composite systems has been emerging in politics, industry, and academia. The issue is exacerbated by the increased use of FRPs in the automotive industry and by the expected decommissioning of airplanes and wind turbines amounting to thousands of metric tons of composite materials. Currently, the recycling of FRPs downcycles the entire composite to some form of reinforcement material (…
AN ACCURATE METHOD TO PREDICT THE STRESS CONCENTRATION IN COMPOSITE LAMINATES WITH A CIRCULAR HOLE UNDER TENSILE LOADING
2007
The paper presents a theoretical-numerical hybrid method for determining the stresses distribution in composite laminates containing a circular hole and subjected to uniaxial tensile loading. The method is based upon an appropriate corrective function allowing a simple and rapid evaluation of stress distributions in a generic plate of finite width with a hole based on the theoretical stresses distribution in an infinite plate with the same hole geometry and material. In order to verify the accuracy of the method proposed, various numerical and experimental tests have been performed by considering different laminate lay-ups; in particular, the experimental results have shown that a combined …
Analysis-oriented stress–strain model of CRFP-confined circular concrete columns with applied preload
2018
The compressive behavior of FRP-confined concrete is a current issue in the field of structural retrofitting. The available models well predict the stress–strain behavior under monotonic and cyclic loads. However, in the practical applications, columns that need an increasing of bearing capacity are often strengthened under serviceability load conditions, with a stress and strain state that could change the response of the reinforced systems with respect to the case of the unloaded state. In this paper, the compressive behavior of circular FRP-confined concrete columns with preload is analyzed with the introduction of a modified analysis-oriented model. Differently from the classical formul…
Evaluation of continuous filament mat influence on the bending behaviour of GFRP pultruded material via Electronic Speckle Pattern Interferometry
2017
Abstract Pultrusion is a process allowing the production of unidirectional (roving) fibre-reinforced polymer (FRP) structural elements with constant cross section. Recently, also civil engineers focused their attention on pultruded composite materials as alternative to traditional ones (e.g., concrete, steel). Furthermore, to improve the transverse strength and stiffness with respect to the fibres direction, continuous filament mat (CFM) is often placed within the stacking sequence. The CFM influence on the global mechanical behaviour is not considered by appropriate actual international standards. In this paper, the influence of the CFM layers on the mechanical behaviour of glass fibres pu…
Mechanical properties of pultruded glass fiber-reinforced plastic after moistening
2012
Abstract The kinetics of moisture sorption under immersion in water at room and elevated temperatures and flexural characteristics of dry (conditionally initial) and wet (moistened up to saturation level) composite material were investigated on flat specimens of polyester based glass fiber-reinforced plastic, cut from I-beam pultruded profile. It was found that the coefficients of diffusion and swelling are different in three principal axis of the composite. The former have the largest value in fiber axis direction, but the latter – in transverse to fiber axis direction out of plane of the layers. The observed difference in kinetics of mass gain and change of volume strain for the specimens…
Numerical and Experimental Assessment of FRP-Concrete Bond System
2021
Fiber reinforced polymer (FRP) composite systems are widely used to repair structurally deficient constructions thanks to their good corrosion resistance, light weight and high strength. The quality of the FRP-substrate interface bond is a crucial parameter affecting the performance of retrofitted structures. In this study, ultrasonic testing have been used to assess the quality of the bonding. In the case of FRP laminates adhesively bonded to concrete, high scattering attenuation occurs due to the presence of concrete heterogeneities. The substrate material behaves almost like a perfect absorber generating a considerable number of short-spaced echo peaks that make the defect echo not disti…
Strength and strain capacities of concrete compression members reinforced with FRP
2003
The analytical compressive behavior of concrete members reinforced with fiber-reinforced polymer (FRP) was examined. The variation in the shape of the transverse cross-section was analyzed. The bearing capacity and the increase in the maximum strain for members having a cross-section which was circular, square or square with round corners reinforced with FRP were determined. The proposed analytical model allows one to evaluate the confining pressure in ultimate conditions considering the effective confined cross-section and also allows one to determine the ultimate strain corresponding to FRP failure through a simplified energetic approach. Analytical results are then compared to experiment…