Search results for "Field Theory"

showing 10 items of 1188 documents

Effect of three-body forces on response functions in infinite neutron matter

2015

International audience; We study the impact of three-body forces on the response functions of cold neutron matter. These response functions are determined in the random phase approximation (RPA) from a residual interaction expressed in terms of Landau parameters. Special attention is paid to the non-central part, including all terms allowed by the relevant symmetries. Using Landau parameters derived from realistic nuclear two- and three-body forces grounded in chiral effective field theory, we find that the three-body term has a strong impact on the excited states of the system and in the static and long-wavelength limit of the response functions for which a new exact formula is established.

Body forcePhysicsNuclear and High Energy Physics[PHYS.NUCL]Physics [physics]/Nuclear Theory [nucl-th]Nuclear Theory010308 nuclear & particles physicsFOS: Physical sciencesFísicaResidual01 natural sciencesNuclear Theory (nucl-th)Classical mechanicsExcited state0103 physical sciencesHomogeneous spaceEffective field theoryNeutronLimit (mathematics)010306 general physicsRandom phase approximation
researchProduct

Quantum criticality on a chiral ladder: An SU(2) infinite density matrix renormalization group study

2019

In this paper we study the ground-state properties of a ladder Hamiltonian with chiral $\text{SU}(2)$-invariant spin interactions, a possible first step toward the construction of truly two-dimensional nontrivial systems with chiral properties starting from quasi-one-dimensional ones. Our analysis uses a recent implementation by us of $\text{SU}(2)$ symmetry in tensor network algorithms, specifically for infinite density matrix renormalization group. After a preliminary analysis with Kadanoff coarse graining and exact diagonalization for a small-size system, we discuss its bosonization and recap the continuum limit of the model to show that it corresponds to a conformal field theory, in agr…

BosonizationPhysicsConformal field theoryDensity matrix renormalization group02 engineering and technologyQuantum entanglementRenormalization group021001 nanoscience & nanotechnology01 natural sciences0103 physical sciencesddc:530Algebraic number010306 general physics0210 nano-technologyScalingSpecial unitary groupMathematical physics
researchProduct

Spectral function for overoccupied gluodynamics from real-time lattice simulations

2018

We study the spectral properties of a highly occupied non-Abelian non-equilibrium plasma appearing ubiquitously in weak coupling descriptions of QCD matter. The spectral function of this far-from-equilibrium plasma is measured by employing linear response theory in classical-statistical real-time lattice Yang-Mills simulations. We establish the existence of transversely and longitudinally polarized quasiparticles and obtain their dispersion relations, effective mass, plasmon frequency, damping rate and further structures in the spectral and statistical functions. Our new method can be interpreted as a non-perturbative generalization of hard thermal loop (HTL) effective theory. We see indica…

CLASSICAL APPROXIMATIONNuclear Theorynucl-thquark-gluon plasmahep-latFOS: Physical sciencesHEAVY-ION COLLISIONShiukkasfysiikka114 Physical sciences01 natural sciencesNuclear Theory (nucl-th)High Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)Lattice (order)0103 physical sciencesquantum chromodynamicsQCD PLASMA INSTABILITIESStatistical physicsGauge theorynonperturbative effects in field theory010306 general physicsHARD THERMAL LOOPSParticle Physics - PhenomenologyPhysicsQuantum chromodynamicsta114010308 nuclear & particles physicsHigh Energy Physics - Lattice (hep-lat)kvarkki-gluoniplasmafinite temperature field theorylattice field theoryISOTROPIZATIONParticle Physics - Latticehep-ph16. Peace & justiceFIELD-THEORYGluonHigh Energy Physics - PhenomenologyNuclear Physics - TheoryQuark–gluon plasmaHIGH-TEMPERATUREGAUGE-THEORIESQuasiparticleSpectral functionkvanttikenttäteoriaStatistical correlationrelativistic heavy-ion collisions
researchProduct

Unequal rapidity correlators in the dilute limit of the JIMWLK evolution

2019

We study unequal rapidity correlators in the stochastic Langevin picture of Jalilian-Marian-Iancu-McLerran-Weigert-Leonidov-Kovner (JIMWLK) evolution in the color glass condensate effective field theory. We discuss a diagrammatic interpretation of the long-range con elators. By separately evolving the Wilson lines in the direct and complex conjugate amplitudes, we use the formalism to study two-particle production at large rapidity separations. We show that the evolution between the rapidities of the two produced particles can be expressed as a linear equation, even in the full nonlinear limit. We also show how the Langevin formalism for two-particle correlations reduces to a Balitsky-Fadin…

COLLISIONSPosition and momentum spacehiukkasfysiikkafield theory114 Physical sciences01 natural sciencesColor-glass condensatenuclear physicsINFINITE-MOMENTUM0103 physical sciencesEQUATIONEffective field theorySCATTERINGRapidity010306 general physicsMathematical physicsPhysicsComplex conjugate010308 nuclear & particles physicsStochastic processCOLOR GLASS CONDENSATENONLINEAR GLUON EVOLUTIONNonlinear systemDIPOLE PICTUREkvanttikenttäteoriaydinfysiikkaLinear equationPhysical Review D
researchProduct

Nucleon localization function in rotating nuclei

2020

Background: An electron localization function was originally introduced to visualize bond structures in molecules. It became a useful tool to describe electron configurations in atoms, molecules and solids. In nuclear physics, a nucleon localization function (NLF) has been used to characterize clusters in light nuclei, fragment formation in fission and pasta phases in the inner crust of neutron stars. Purpose: We use the NLF to study the nuclear response to fast rotation. Methods: We generalize the NLF to the case of nuclear rotation. The extended expressions involve both time-even and time-odd local densities. Since current density and density gradient contribute to the NLF primarily at th…

CURRENTSAngular momentumNuclear TheoryMEAN-FIELDNuclear TheoryFOS: Physical sciences114 Physical sciences01 natural sciencesNuclear Theory (nucl-th)Total angular momentum quantum number0103 physical sciencesSUPERDEFORMED BANDSDISTRIBUTIONScollective levelsNeutron010306 general physicsSpin (physics)EQUATIONSPhysicsCRANKED HARMONIC-OSCILLATOR010308 nuclear & particles physicsYrastnucleon distributionnuclear structure and decaysSTATEElectron localization functionComputational physicsELECTRON LOCALIZATIONMean field theorySYMMETRIESydinfysiikkaNucleonPhysical Review C
researchProduct

Quantum Effects and Phase Transitions in Adsorbed Molecular Layers

1998

Phase transitions in adsorbed (two dimensional) fluids and in adsorbed layers of molecules are studied with a combination of path integral Monte Carlo (PIMC), Gibbs ensemble Monte Carlo (GEMC) and finite size scaling techniques. Entropy driven phase transitions in systems with purely repulsive interactions are analyzed as well phase diagrams of fluids with internal quantum states. Adsorbed layers of H 2 molecules at a full monolayer coverage in the \(\sqrt 3 \times \sqrt 3 \) structure have a higher transition temperature to the disordered phase compared to the system with the heavier D 2 molecules, this effect is analyzed by PIMC. Linear N 2 molecules adsorbed on graphite show a transition…

Canonical ensemblePhase transitionMaterials scienceMean field theoryTricritical pointQuantum mechanicsPhase (matter)MonolayerPhysics::Chemical PhysicsPath integral Monte CarloPhase diagram
researchProduct

Monte Carlo Simulation of Alloy Phase Diagrams and Short-Range Order

1986

As a prototype model for order-disorder phenomena in binary alloys, a face-centered cubic lattice is considered,the sites of which can be taken by either A-atoms or B-atoms, assuming pair-wise interactions between nearest (J) and next nearest neighbours (J). The phase diagram is constructed from Monte Carlo calculations. Some technical aspects essential for the success of such calculations are briefly mentioned (use of grand-canonical rather than canonical ensemble, how to obtain the free energy needed to locate first-order phase transitions, etc.). It is shown that the topology of the phase diagram changes when the ratio R = Jnnn/Jnn is varied, and this behaviour is discussed in the contex…

Canonical ensemblePhase transitionMean field theoryLattice (order)Monte Carlo methodBinary numberStatistical physicsRenormalization groupMathematicsPhase diagram
researchProduct

Isotropic-nematic interface in suspensions of hard rods: Mean-field properties and capillary waves

2006

We present a study of the isotropic-nematic interface in a system of hard spherocylinders. First we compare results from Monte Carlo simulations and Onsager density functional theory for the interfacial profiles of the orientational order parameter and the density. Those interfacial properties that are not affected by capillary waves are in good agreement, despite the fact that Onsager theory overestimates the coexistence densities. Then we show results of a Monte Carlo study of the capillary waves of the interface. In agreement with recent theoretical investigations (Eur.Phys.J. E {\bf 18} 407 (2005)) we find a strongly anistropic capillary wave spectrum. For the wave-numbers accessed in o…

Capillary waveCondensed matter physicsField (physics)Monte Carlo methodIsotropy: Physics [G04] [Physical chemical mathematical & earth Sciences]FOS: Physical sciencesCondensed Matter - Soft Condensed MatterCondensed Matter::Soft Condensed MatterMean field theory: Physique [G04] [Physique chimie mathématiques & sciences de la terre]Liquid crystalNatuur- en SterrenkundeSoft Condensed Matter (cond-mat.soft)Density functional theoryAnisotropyMathematics
researchProduct

PHASE EQUILIBRIA IN THIN POLYMER FILMS

2001

Within self-consistent field theory and Monte Carlo simulations the phase behavior of a symmetrical binary AB polymer blend confined into a thin film is studied. The film surfaces interact with the monomers via short ranged potentials. One surface attracts the A component and the corresponding semi-infinite system exhibits a first order wetting transition. The surface interaction of the opposite surface is varied as to study the crossover from capillary condensation for symmetric surface fields to interface localization/delocalization transition for antisymmetric surface fields. In the former case the phase diagram has a single critical point close to the bulk critical point. In the latter…

Capillary waveMaterials scienceWetting transitionMean field theoryCondensed matter physicsCritical point (thermodynamics)Triple pointPhase (matter)Statistical and Nonlinear PhysicsIsing modelCondensed Matter PhysicsPhase diagramInternational Journal of Modern Physics B
researchProduct

An algorithm based in Ewald's method to calculate lattice sums in the framework of crystal field theory

1992

A simple procedure to help calculate the electrostatic potential at any point inside an ionic crystal is proposed and tested. The rationale for the mathematical algorithm to calculate lattice sums is based on Ewald's technique. The method is discussed with regard to the dimensions and shape of the crystal lattice. Electrostatic potential for NaCl and MgO type structures are obtained and compared with the values calculated by means of Ewald's method

ChemistryCrystal chemistryCrystal structureCondensed Matter PhysicsBiochemistryP3MEwald summationCondensed Matter::Materials ScienceParticle in a one-dimensional latticeCrystal field theoryLattice (order)Ewald's spherePhysical and Theoretical ChemistryAlgorithmJournal of Molecular Structure: THEOCHEM
researchProduct