Search results for "Field strength"

showing 10 items of 42 documents

Gluon mass generation in the presence of dynamical quarks

2013

We study in detail the impact of dynamical quarks on the gluon mass generation mechanism, in the Landau gauge, for the case of a small number of quark families. As in earlier considerations, we assume that the main bulk of the unquenching corrections to the gluon propagator originates from the fully dressed quark-loop diagram. The nonperturbative evaluation of this diagram provides the key relation that expresses the unquenched gluon propagator as a deviation from its quenched counterpart. This relation is subsequently coupled to the integral equation that controls the momentum evolution of the effective gluon mass, which contains a single adjustable parameter; this constitutes a major impr…

Dyson-schwinger equationsQuarkHigh Energy Physics - TheoryNuclear and High Energy PhysicsParticle physicsHigh Energy Physics::LatticeNuclear TheoryBackground field methodFOS: Physical sciencesPartícules (Física nuclear)High Energy Physics - Phenomenology (hep-ph)High Energy Physics - LatticeGluon fieldPhysicsBackground field methodMass generationHigh Energy Physics - Lattice (hep-lat)High Energy Physics::PhenomenologyPropagatorGluonMass formulaHigh Energy Physics - PhenomenologyHigh Energy Physics - Theory (hep-th)Gluon field strength tensorQuantum electrodynamicsHigh Energy Physics::Experiment
researchProduct

New insights into electron spin dynamics in the presence of correlated noise

2011

The changes of the spin depolarization length in zinc-blende semiconductors when an external component of correlated noise is added to a static driving electric field are analyzed for different values of field strength, noise amplitude and correlation time. Electron dynamics is simulated by a Monte Carlo procedure which keeps into account all the possible scattering phenomena of the hot electrons in the medium and includes the evolution of spin polarization. Spin depolarization is studied by examinating the decay of the initial spin polarization of the conduction electrons through the D'yakonov-Perel process, the only relevant relaxation mechanism in III-V crystals. Our results show that, f…

Field (physics)DephasingElectronsField strengthSpin relaxation and scatteringNoise processes and phenomenaSettore FIS/03 - Fisica Della MateriaMagneticsDistribution theory and Monte Carlo studieElectric fieldElectrochemistryScattering RadiationGeneral Materials ScienceCondensed Matter - Statistical MechanicsPhysicsCondensed matter physicsSpin polarizationChemistry PhysicalRelaxation (NMR)High-field and nonlinear effectCondensed Matter PhysicsSettore FIS/07 - Fisica Applicata(Beni Culturali Ambientali Biol.e Medicin)Condensed Matter - Other Condensed MatterAmplitudeCrystallizationMonte Carlo MethodNoise (radio)Journal of Physics: Condensed Matter
researchProduct

Floquet states in dissipative open quantum systems

2019

Abstract We theoretically investigate basic properties of nonequilibrium steady states of periodically-driven open quantum systems based on the full solution of the Maxwell–Bloch equation. In a resonant driving condition, we find that the transverse relaxation, also known as decoherence, significantly destructs the formation of Floquet states while the longitudinal relaxation does not directly affect it. Furthermore, by evaluating the quasienergy spectrum of the nonequilibrium steady states, we demonstrate that Rabi splitting can be observed as long as the decoherence time is as short as one third of the Rabi-cycle. Moreover, we find that Floquet states can be formed even under significant …

Floquet theoryQuantum decoherenceFloquet systemFOS: Physical sciencesNon-equilibrium thermodynamicsField strength02 engineering and technology7. Clean energy01 natural sciencesSettore FIS/03 - Fisica Della MateriaQuantum mechanicsMesoscale and Nanoscale Physics (cond-mat.mes-hall)0103 physical sciences010306 general physicsQuantumPhysicsQuantum PhysicsCondensed Matter - Mesoscale and Nanoscale PhysicsDecoherenceDissipationCondensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnologyCondensed Matter PhysicsAtomic and Molecular Physics and OpticsDissipationDissipative systemRelaxation (physics)Quantum Physics (quant-ph)0210 nano-technologyPhysics - OpticsOptics (physics.optics)Journal of Physics B: Atomic, Molecular and Optical Physics
researchProduct

Constraints on the local interstellar magnetic field from non-thermal emission of SN1006

2011

The synchrotron radio morphology of bilateral supernova remnants depends on the mechanisms of particle acceleration and on the viewing geometry. However, unlike X-ray and $\gamma$-ray morphologies, the radio emission does not depend on the cut-off region of the parent electron population, making it a simpler and more straightforward tool to investigate the physics of cosmic ray production in SNRs. Our aim is to derive from the radio morphology tight constraints on the direction of the local magnetic field and its gradient, and on the obliquity dependence of the electron injection efficiency. We perform a set of 3D MHD simulations describing the expansion of a spherical SNR through a magneti…

High Energy Astrophysical Phenomena (astro-ph.HE)Physicsshock waveField (physics)Astrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsCosmic rayField strengthAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsGalactic planeGalaxyMagnetic fieldSupernovaSpace and Planetary ScienceMagnetohydrodynamicsAstrophysics - High Energy Astrophysical Phenomenaacceleration of particleAstrophysics::Galaxy AstrophysicsISM: supernova remnantsAstronomy & Astrophysics
researchProduct

Adiabatic regularization for Dirac fields in time-varying electric backgrounds

2020

The adiabatic regularization method was originally proposed by Parker and Fulling to renormalize the energy-momentum tensor of scalar fields in expanding universes. It can be extended to renormalize the electric current induced by quantized scalar fields in a time-varying electric background. This can be done in a way consistent with gravity if the vector potential is considered as a variable of adiabatic order one. Assuming this, we further extend the method to deal with Dirac fields in four spacetime dimensions. This requires a self-consistent ansatz for the adiabatic expansion, in presence of a prescribed time-dependent electric field, which is different from the conventional expansion u…

High Energy Physics - TheoryPhysics010308 nuclear & particles physicsConformal anomalyScalar (mathematics)FOS: Physical sciencesField strengthGeneral Relativity and Quantum Cosmology (gr-qc)01 natural sciencesGeneral Relativity and Quantum CosmologyHigh Energy Physics - Theory (hep-th)Quantum electrodynamicsElectric fieldRegularization (physics)0103 physical sciences010306 general physicsAdiabatic processAnsatzVector potentialPhysical Review
researchProduct

Helium-3 imaging of pulmonary ventilation.

1998

In the first studies in humans, the 3He gas was Helium is an inert, non-radioactive, noble gas. directly inhaled from the glass cell or via a mouth 3He is a rare isotope with a nuclear spin c. As it tip or plastic bag [2, 3]. The estimated inhaled is derived from tritium decay, it is quite expensive. volume in our studies was 400–500 ml. Recently, Non-polarized 3He costs 100–150 US$. Advanwe developed a computer-assisted application tages for applications in humans are: negligible system which is compatible with spontaneous solubility in water or blood, no adverse effects — breathing, assisted or mechanical ventilation. The widely used in deep-sea diving (80% He, 20% lungs can be flushed wi…

Lung DiseasesHelmholtz coilMaterials sciencebusiness.industryContrast Mediachemistry.chemical_elementField strengthGeneral MedicineLaserHeliumMagnetic Resonance Imaginglaw.inventionOptical pumpingchemistrylawHelium-3HumansXenon IsotopesRadiology Nuclear Medicine and imagingHyperpolarization (physics)Atomic physicsNuclear medicinebusinessHyperfine structureHeliumThe British Journal of Radiology
researchProduct

Local simulations of the magnetized Kelvin-Helmholtz instability in neutron-star mergers

2010

Context. Global MHD simulations show Kelvin-Helmholtz (KH) instabilities at the contact surface of two merging neutron stars. That region has been identified as the site of efficient amplification of magnetic fields. However, these global simulations, due to numerical limitations, were unable to determine the saturation level of the field strength, and thus the possible back-reaction of the magnetic field onto the flow. Aims. We investigate the amplification of initially weak fields in KH unstable shear flows, and the back-reaction of the field onto the flow. Methods. We use a high-resolution ideal MHD code to perform 2D and 3D local simulations of shear flows. Results. In 2D, the magnetic …

Magnetohydrodynamics (MHD)Field (physics):ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia::Otras [UNESCO]FOS: Physical sciencesField strengthAstrophysicsMagnetohydrodynamics (MHD); Instabilities; Turbulence; Stars : neutron; Gamma; Ray burst : generalUNESCO::ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia::OtrasGammageneral [Ray burst]Solar and Stellar Astrophysics (astro-ph.SR)Equipartition theoremPhysicsAstronomy and Astrophysicsneutron [Stars]MechanicsVortexMagnetic fieldShear (sheet metal)TurbulenceAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceInstabilitiesUNESCO::ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia::EstrellasMagnetohydrodynamicsShear flow:ASTRONOMÍA Y ASTROFÍSICA::Cosmología y cosmogonia::Estrellas [UNESCO]
researchProduct

The Magnetic Properties of Electrical Pulses Delivered by Deep-Brain Stimulation Systems

2020

The aim of this article is to analyze the magnetic field properties for both the monopolar and bipolar electrode configurations of deep-brain stimulation electrodes using 3-D magnetic field measurements and to investigate if the magnetic measurements enable a localization of the electrode as a proof of concept. Therefore, a simplified head phantom with an integrated deep-brain stimulation electrode was created to measure the magnetic flux densities in all the three dimensions with a fluxgate magnetometer over a sensor trajectory of measuring points inside the magnetically shielded chamber. The magnitude of the magnetic flux density for monopolar stimulation and bipolar stimulation is in the…

Materials scienceField (physics)MagnetometerAcoustics020208 electrical & electronic engineeringField strength02 engineering and technologyImaging phantomMagnetic fluxMagnetic fieldlaw.inventionlawElectrodeElectromagnetic shielding0202 electrical engineering electronic engineering information engineeringElectrical and Electronic EngineeringInstrumentationIEEE Transactions on Instrumentation and Measurement
researchProduct

Geometrical dependence of domain wall propagation and nucleation fields in magnetic domain wall sensor devices

2017

We study the key domain wall properties in segmented nanowires loop-based structures used in domain wall based sensors. The two reasons for device failure, namely the distribution of domain wall propagation field (depinning) and the nucleation field are determined with Magneto-Optical Kerr Effect (MOKE) and Giant Magnetoresistance (GMR) measurements for thousands of elements to obtain significant statistics. Single layers of Ni$_{81}$Fe$_{19}$, a complete GMR stack with Co$_{90}$Fe$_{10}$/Ni$_{81}$Fe$_{19}$ as a free layer and a single layer of Co$_{90}$Fe$_{10}$ are deposited and industrially patterned to determine the influence of the shape anisotropy, the magnetocrystalline anisotropy an…

Materials scienceMagnetic domainNucleationGeneral Physics and AstronomyFOS: Physical sciencesField strength02 engineering and technologyApplied Physics (physics.app-ph)01 natural sciencesElectrical resistance and conductance0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)010302 applied physicsCondensed Matter - Materials ScienceCondensed Matter - Mesoscale and Nanoscale Physicsbusiness.industryMaterials Science (cond-mat.mtrl-sci)Physics - Applied Physics021001 nanoscience & nanotechnologyMagnetic fieldPower (physics)Domain wall (magnetism)OptoelectronicsDevelopment (differential geometry)0210 nano-technologybusiness
researchProduct

Spin Hall magnetoresistance in the non-collinear ferrimagnet GdIG close to the compensation temperature

2017

We investigate the spin Hall magnetoresistance (SMR) in a gadolinium iron garnet (GdIG)/platinum (Pt) heterostructure by angular dependent magnetoresistance measurements. The magnetic structure of the ferromagnetic insulator GdIG is non-collinear near the compensation temperature, while it is collinear far from the compensation temperature. In the collinear regime, the SMR signal in GdIG is consistent with the usual [Formula: see text] relation well established in the collinear magnet yttrium iron garnet, with [Formula: see text] the angle between magnetization and spin Hall spin polarization direction. In the non-collinear regime, both an SMR signal with inverted sign and a more complex an…

Materials scienceMagnetic structureCondensed matter physicsMagnetoresistanceSpin polarizationYttrium iron garnetField strength02 engineering and technologyCondensed Matter::Mesoscopic Systems and Quantum Hall Effect021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesCondensed Matter::Materials ScienceMagnetizationchemistry.chemical_compoundFerromagnetismchemistryFerrimagnetism0103 physical sciencesCondensed Matter::Strongly Correlated ElectronsGeneral Materials Science010306 general physics0210 nano-technologyJournal of Physics: Condensed Matter
researchProduct