Search results for "Fine structure"

showing 10 items of 656 documents

Peculiarities of the local structure in new medium- and high-entropy, low-symmetry tungstates

2022

G. Bakradze acknowledges financial support provided by the Latvian Council of Science for project no. 1.1.1.2/VIAA/3/19/444 (agreement no. 1.1.1.2/16/I/001) realized at the Institute of Solid State Physics, University of Latvia. The Institute of Solid State Physics, University of Latvia, as a centre of excellence, has received funding from the European Union’s Horizon 2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under grant agreement no. 739508, project CAMART2.

Condensed Matter - Materials ScienceHigh-entropy oxidesMaterials Science (cond-mat.mtrl-sci)FOS: Physical sciences:NATURAL SCIENCES::Physics [Research Subject Categories]TungstatesGeneral ChemistryCondensed Matter Physics540ddc:540Reverse Monte Carlo methodGeneral Materials ScienceSolid solutionsExtended X-ray absorption fine structure
researchProduct

Quantum mechanics-classical molecular dynamics approach to EXAFS

2009

Recently developed approach to the simulation of configuration-averaged EXAFS spectra using the combination of quantum mechanics and classical Molecular Dynamics (MD) methods is presented on the example of the Ti K-edge in SrTiO3 at T = 300 K. The method allows one to significantly reduce the number of fitting parameters required in the EXAFS signal calculation and to account entirely for disorder contributions. We show also that the sensitivity of configuration-averaged EXAFS spectra to the force field model employed in the MD simulations allows one to use them as additional information for the force field parameters fitting.

Condensed Matter::Materials ScienceHistoryMolecular dynamicsExtended X-ray absorption fine structureChemistryQuantum mechanicsStatistical physicsForce field (chemistry)Spectral lineComputer Science ApplicationsEducationJournal of Physics: Conference Series
researchProduct

Local disorder studied inSrTiO3at low temperature by EXAFS spectroscopy

1994

The temperature dependence of the local distortions in ${\mathrm{SrTiO}}_{3}$ has been studied by EXAFS spectroscopy at the titanium K edge (4982 eV). The oxygen-ion Debye-Waller factor ${\mathrm{\ensuremath{\sigma}}}_{0}^{2}$ has been determined from 4.5 to 240 K. The antiferrodistortive transition at 105 K is evidenced by a step in this Debye-Waller factor. At about 31 K, a maximum of ${\mathrm{\ensuremath{\sigma}}}_{0}^{2}$ is detected and the EXAFS oscillations due to the first oxygen shell increase. This is the signature of a maximum disorder in the lattice vibrations in this temperature range. A quasiharmonic model with a sinusoidal modulation of the Ti-O distance cannot account for t…

Condensed Matter::Materials ScienceMaterials scienceExafs spectroscopyNuclear magnetic resonanceCondensed matter physicsK-edgeExtended X-ray absorption fine structureLattice (group)Shell (structure)Lattice vibrationAtmospheric temperature rangeSinusoidal modulationPhysical Review B
researchProduct

Large scale computer modelling of point defects in ABO 3 perovskites

2005

We present results for basic intrinsic defects: F-type electron centers, free and bound electron and hole polarons in ABO3 perovskites. Both one-site (atomic) and two-site (molecular) hole polarons are expected to coexist, characterized by close absorption energies. Shell Model (SM) and intermediate neglect of differential overlap (INDO) calculations of the F center diffusion indicate that the relevant activation energy is quite low, ca. 0.8 eV. Further INDO calculations support the existence of self-trapped electron polarons in PbTiO3, BaTiO3, KNbO3, and KTaO3 crystals. The relevant lattice relaxation energies are typically 0.2 eV, whereas the optical absorption energies are around 0.8 eV.…

Condensed Matter::Materials SciencePhase transitionCondensed matter physicsExtended X-ray absorption fine structureChemistryElectronElectronic structurePolaronCrystallographic defectMolecular physicsPerovskite (structure)Solid solutionphysica status solidi (c)
researchProduct

Iron-based Heusler compounds Fe2YZ: Comparison with theoretical predictions of the crystal structure and magnetic properties

2013

The present work reports on the new soft ferromagnetic Heusler phases Fe${}_{2}$NiGe, Fe${}_{2}$CuGa, and Fe${}_{2}$CuAl, which in previous theoretical studies have been predicted to exist in a tetragonal Heusler structure. Together with the known phases Fe${}_{2}$CoGe and Fe${}_{2}$NiGa these materials have been synthesized and characterized by powder x-ray diffraction, ${}^{57}$Fe M\"ossbauer spectroscopy, superconducting quantum interference device, and energy-dispersive x-ray measurements. In particular M\"ossbauer spectroscopy was used to monitor the degree of local atomic order/disorder and to estimate magnetic moments at the Fe sites from the hyperfine fields. It is shown that in con…

Condensed Matter::Materials ScienceTetragonal crystal systemMaterials scienceMagnetic momentFerromagnetismCondensed matter physicsAb initioCoherent potential approximationInverseElectronic structureCondensed Matter PhysicsHyperfine structureElectronic Optical and Magnetic MaterialsPhysical Review B
researchProduct

Ultracold atomic Bose and Fermi spinor gases in optical lattices

2006

We investigate magnetic properties of Mott-insulating phases of ultracold Bose and Fermi spinor gases in optical lattices. We consider in particular the F=2 Bose gas, and the F=3/2 and F=5/2 Fermi gases. We derive effective spin Hamiltonians for one and two atoms per site and discuss the possibilities of manipulating the magnetic properties of the system using optical Feshbach resonances. We discuss low temperature quantum phases of a 87Rb gas in the F=2 hyperfine state, as well as possible realizations of high spin Fermi gases with either 6Li or 132Cs atoms in the F=3/2 state, and with 173Yb atoms in the F=5/2 state.

Condensed Matter::Quantum GasesPhysicseinstein condensationSpinorBose gasCondensed matter physicsFOS: Physical sciencesGeneral Physics and Astronomyresonant lightQuantum phasesState (functional analysis)quantum phasesCondensed Matter - Other Condensed Matterground-statesone bosonssystemsddc:530Condensed Matter::Strongly Correlated ElectronsantiferromagnetsDewey Decimal Classification::500 | Naturwissenschaften::530 | PhysikHyperfine structureOther Condensed Matter (cond-mat.other)Spin-½Fermi Gamma-ray Space TelescopeNew Journal of Physics
researchProduct

Interacting Rubidium and Caesium Atoms

2007

Binary mixtures of ultracold atoms are of great interest in the research field of quantum optics and are studied by several groups aiming at different applications. This paper works with rubidium and caesium, which are simultaneously stored in a magnetic trap. Species-selective microwave cooling is used on the rubidium groundstate hyperfine transition. Caesium is sympathetically cooled via elastic collisions with rubidium. When cooling down the mixture to temperatures below 1 muK, below 4 muK we observe strong losses of caesium. Analysing the dynamics of sympathetic cooling, lower limit for the modulus of the rubidium-caesium triplet s-wave scattering length is estimated.

Condensed Matter::Quantum GasesSympathetic coolingMaterials sciencechemistry.chemical_elementRubidiumchemistryUltracold atomMagnetic trapLaser coolingCaesiumPhysics::Atomic and Molecular ClustersAtom opticsPhysics::Atomic PhysicsAtomic physicsHyperfine structure2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference
researchProduct

A stable oxoverdazyl free radical: Structural and magnetic characterization

2006

Abstract The structure and magnetic properties (susceptibility and ESR) of the stable oxoverdazyl free radical 6-(4-acetamidophenyl)-1,4,5,6-tetrahydro-2,4-dimethyl-1,2,4,5-tetrazin-3(2H)-one are presented. The crystal structure consists of chains of parallel planar molecules running along the b-axis. These chains are formed by dimers with a ring-over-bond overlap and a significant offset between dimers, although with similar inter- and intradimer distances. The susceptibility measurements show that this compound is an S = 1/2 paramagnet with weak antiferromagnetic interactions. The magnetic susceptibility can be very well reproduced with an antiferromagnetic regular chain model with g = 2.…

Condensed matter physicsChemistryCrystal structureMagnetic susceptibilityInorganic ChemistryParamagnetismCrystallographyPlanarUnpaired electronMaterials ChemistryMoleculeAntiferromagnetismPhysical and Theoretical ChemistryHyperfine structurePolyhedron
researchProduct

X-ray-absorption fine-structure study of ZnSexTe1−x alloys

2004

X-ray-absorption fine-structure experiments at different temperatures in ZnSexTe1−x (x=0, 0.1, 0.2, 0.55, 0.81, 0.93, 0.99, and 1.0) have been performed in order to obtain information about the structural relaxation and disorder effects occurring in the alloys. First and second neighbor distance distributions have been characterized at the Se and Zn K edges, using multiple-edge and multiple-scattering data analysis. The first neighbor distance distribution was found to be bimodal. The static disorder associated with the Zn–Te distance variance did not depend appreciably on composition. On the other hand, the static disorder associated with the Zn–Se distance increased as the Se content dimi…

Condensed matter physicsChemistryCrystal structureZinc compounds ; Semiconductor materials ; Order-disorder transformations ; Stoichiometry ; X-ray absorption spectra ; Debye-Waller factors ; II-VI semiconductors ; Crystal structureRelaxation (NMR)UNESCO::FÍSICAGeneral Physics and AstronomyII-VI semiconductorsCrystal structureDebye-Waller factorsStoichiometryX-ray absorption fine structureIonSemiconductor materialsX-ray absorption spectraTilt (optics):FÍSICA [UNESCO]Orientation (geometry)TetrahedronOrder-disorder transformationsZinc compoundsStoichiometry
researchProduct

Structure and Properties of GdAuSn and the GdAuSn/MnAuSn System

2006

The crystal structure of GdAuSn was refined by means of single crystal X-ray diffraction. Band structure calculations based on the structural data confirmed the antiferromagnetic ground state and the metallic behaviour of GdAuSn. 119mSn, 155Gd and 197Au Mossbauer spectroscopic studies were used to verify the values of the hyperfine parameters that were given by the band structure calculations. Band structure calculations of MnAuSn confirmed that this half-Heusler compound belongs to the family of half-metallic ferromagnets. Magnetic susceptibility, conductivity and Mossbauer studies were used to characterize granular material based on the half-Heusler ferromagnet MnAuSn in the antiferromagn…

Condensed matter physicsMagnetoresistanceChemistryGeneral MedicineCrystal structureMagnetic susceptibilityInorganic ChemistryCondensed Matter::Materials ScienceAntiferromagnetismCondensed Matter::Strongly Correlated ElectronsElectronic band structureGround stateSingle crystalHyperfine structureZeitschrift für anorganische und allgemeine Chemie
researchProduct