Search results for "Finite element"

showing 10 items of 892 documents

Orthotropic plate dynamics by a novel meshfree method

2003

Publisher Summary This chapter deals with a novel meshfree method for the dynamic analysis of orthotropic plates under the Kirchhoff small deflection theory. The approach starts from a modified function whose stationarity conditions lead to the meshfree plate dynamic model through a discretization process—based on the use of orthotropic plate static fundamental solutions. The resolving system obtained is characterized by—frequency independent stiffness and mass matrices, which preserve the symmetry and definiteness properties of the continuum. Moreover, these operators are computed by boundary integrals of regular kernels. The method allows the application of standard numerical routines ava…

Diffuse element methodDiscretizationContinuum (measurement)Plate theoryMathematical analysismedicineStiffnessMeshfree methodsGeometrymedicine.symptomOrthotropic materialFinite element methodMathematics
researchProduct

Transfer matrix method applied to the parallel assembly of sound absorbing materials

2013

International audience; The transfer matrix method (TMM) is used conventionally to predict the acoustic properties of laterally infinite homogeneous layers assembled in series to form a multilayer. In this work, a parallel assembly process of transfer matrices is used to model heterogeneous materials such as patchworks, acoustic mosaics, or a collection of acoustic elements in parallel. In this method, it is assumed that each parallel element can be modeled by a 2 × 2 transfer matrix, and no diffusion exists between elements. The resulting transfer matrix of the parallel assembly is also a 2 × 2 matrix that can be assembled in series with the classical TMM. The method is validated by compar…

Diffusion (acoustics)Materials scienceAcoustics and UltrasonicsDiscretizationSeries (mathematics)AcousticsTransfer-matrix method (optics)Mathematical analysis02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesTransfer matrixFinite element methodMatrix (mathematics)[SPI]Engineering Sciences [physics]Arts and Humanities (miscellaneous)0103 physical sciences0210 nano-technology010301 acousticsParallel array
researchProduct

Damage and plasticity at the interfaces in composite materials and structures

2009

Abstract The structural behavior at the interface between two surfaces of ductile, brittle or quasi-brittle materials is studied by a new analytical elastoplastic damaging model. The model is developed in the framework of a thermodynamically consistent theory. The Helmholtz free energy is written to predict the materials’ hardening or softening. An isotropic damage is considered and the possible effects of dilatancy are taken into account including non-associative flow rules. The interface laws are presented both in a rate and a discrete incremental form. The analytical formulation is then implemented into a finite element code and two structural members are studied to validate the model. T…

DilatantMaterials sciencebusiness.industryMechanical EngineeringIsotropyComputational MechanicsGeneral Physics and AstronomyStructural engineeringPlasticityStrain hardening exponentFinite element methodComputer Science Applicationssymbols.namesakeBrittlenessinterface damage plasticity coupling biphaseMechanics of MaterialsHelmholtz free energyHardening (metallurgy)symbolsSettore ICAR/08 - Scienza Delle CostruzionibusinessComputer Methods in Applied Mechanics and Engineering
researchProduct

Optimal shape design and unilateral boundary value problems: Part II

2007

In the first part we give a general existence theorem and a regularization method for an optimal control problem where the control is a domain in R″ and where the system is governed by a state relation which includes differential equations as well as inequalities. In the second part applications for optimal shape design problems governed by the Dirichlet-Signorini boundary value problem are presented. Several numerical examples are included.

Dirichlet problemMathematical optimizationControl and OptimizationPartial differential equationDifferential equationApplied MathematicsExistence theoremOptimal controlFinite element methodControl and Systems EngineeringVariational inequalityApplied mathematicsBoundary value problemSoftwareMathematicsOptimal Control Applications and Methods
researchProduct

Finite element approximations of the wave equation with Dirichlet boundary data defined on a bounded domain in R2

2006

Dirichlet problemsymbols.namesakeDirichlet boundary conditionDirichlet's principleMathematical analysissymbolsMixed finite element methodBoundary value problemDirichlet's energyMixed boundary conditionPoincaré–Steklov operatorMathematics
researchProduct

Random analysis of geometrically non-linear FE modelled structures under seismic actions

1990

Abstract In the framework of the finite element (FE) method, by using the “total Lagrangian approach”, the stochastic analysis of geometrically non-linear structures subjected to seismic inputs is performed. For this purpose the equations of motion are written with the non-linear contribution in an explicit representation, as pseudo-forces, and with the ground motion modelled as a filtered non-stationary white noise Gaussian process, using a Tajimi-Kanai-like filter. Then equations for the moments of the response are obtained by extending the classical Ito's rule to vectors of random processes. The equations of motion, and the equations for moments, obtained here, show a perfect formal simi…

Discrete mathematicsHermite polynomialsSimilarity (geometry)Random excitation; non-linear structuresStochastic processMathematical analysisEquations of motionBuilding and ConstructionWhite noiseFinite element methodRandom excitationNonlinear systemsymbols.namesakesymbolsnon-linear structuresSafety Risk Reliability and QualityGaussian processCivil and Structural EngineeringMathematics
researchProduct

Rank structured approximation method for quasi--periodic elliptic problems

2016

We consider an iteration method for solving an elliptic type boundary value problem $\mathcal{A} u=f$, where a positive definite operator $\mathcal{A}$ is generated by a quasi--periodic structure with rapidly changing coefficients (typical period is characterized by a small parameter $\epsilon$) . The method is based on using a simpler operator $\mathcal{A}_0$ (inversion of $\mathcal{A}_0$ is much simpler than inversion of $\mathcal{A}$), which can be viewed as a preconditioner for $\mathcal{A}$. We prove contraction of the iteration method and establish explicit estimates of the contraction factor $q$. Certainly the value of $q$ depends on the difference between $\mathcal{A}$ and $\mathcal…

Discrete mathematicsNumerical AnalysisRank (linear algebra)PreconditionerApplied Mathematicsprecondition methodsguaranteed error boundsOrder (ring theory)65F30 65F50 65N35 65F10tensor type methods010103 numerical & computational mathematicsNumerical Analysis (math.NA)elliptic problems with periodic and quasi-periodic coefficients01 natural sciencesFinite element method010101 applied mathematicsComputational MathematicsOperator (computer programming)Simple (abstract algebra)FOS: MathematicsBoundary value problemTensorMathematics - Numerical Analysis0101 mathematicsMathematics
researchProduct

Controllability method for acoustic scattering with spectral elements

2007

We formulate the Helmholtz equation as an exact controllability problem for the time-dependent wave equation. The problem is then discretized in time domain with central finite difference scheme and in space domain with spectral elements. This approach leads to high accuracy in spatial discretization. Moreover, the spectral element method results in diagonal mass matrices, which makes the time integration of the wave equation highly efficient. After discretization, the exact controllability problem is reformulated as a least-squares problem, which is solved by the conjugate gradient method. We illustrate the method with some numerical experiments, which demonstrate the significant improveme…

DiscretizationHelmholtz equationApplied MathematicsNumerical analysisSpectral element methodMathematical analysisSpectral element methodFinite difference methodExact controllabilityFinite element methodControllabilityakustinen sirontaComputational MathematicsMass lumpingHelmholtz equationSpectral methodMathematicsJournal of Computational and Applied Mathematics
researchProduct

Approximation of Elliptic Hemivariational Inequalities

1999

From the previous chapter we know that there exist many important problems in mechanics in which constitutive laws are expressed by means of nonmonotone, possibly multivalued relations (nonmonotone multivalued stress-strain or reaction-displacement relations,e.g). The resulting mathematical model leads to an inclusion type problem involving multivalued nonmonotone mappings or to a substationary type problem for a nonsmooth, nonconvex superpotential expressed in terms of calculus of variation. It is the aim of this chapter to give a detailed study of a discretization of such a type of problems including the convergence analysis. Here we follow closely Miettinen and Haslinger, 1995, Miettinen…

DiscretizationMathematical analysisConvergence (routing)Variational inequalitySuperpotentialApplied mathematicsCalculus of variationsType (model theory)Bilinear formFinite element methodMathematics
researchProduct

Symmetric Galerkin Boundary Element Methods

1998

This review article concerns a methodology for solving numerically, for engineering purposes, boundary and initial-boundary value problems by a peculiar approach characterized by the following features: the continuous formulation is centered on integral equations based on the combined use of single-layer and double-layer sources, so that the integral operator turns out to be symmetric with respect to a suitable bilinear form. The discretization is performed either on a variational basis or by a Galerkin weighted residual procedure, the interpolation and weight functions being chosen so that the variables in the approximate formulation are generalized variables in Prager’s sense. As main con…

DiscretizationMechanical EngineeringMathematical analysisBoundary (topology)Singular integralGalerkin methodSingular boundary methodBoundary knot methodBoundary element methodFinite element methodMathematicsApplied Mechanics Reviews
researchProduct