Search results for "Finite element"

showing 10 items of 892 documents

Mechanical characterisation of pentagonal gold nanowires in three different test configurations: A comparative study.

2019

Abstract Mechanical characterisation of individual nanostructures is a challenging task and can greatly benefit from the utilisation of several alternative approaches to increase the reliability of results. In the present work, we have measured and compared the elastic modulus of five-fold twinned gold nanowires (NWs) with atomic force microscopy (AFM) indentation in three different test configurations: three-point bending with fixed ends, three-point bending with free ends and cantilevered-beam bending. The free-ends condition was realized by introducing a novel approach where the NW is placed diagonally inside an inverted pyramid chemically etched in a silicon wafer. In addition, all thre…

010302 applied physicsMaterials scienceNanowireGeneral Physics and Astronomy02 engineering and technologyCell BiologyBendingEdge (geometry)021001 nanoscience & nanotechnology01 natural sciencesFinite element methodStructural BiologyIndentation0103 physical sciencesGeneral Materials ScienceWaferComposite materialDeformation (engineering)0210 nano-technologyElastic modulusMicron (Oxford, England : 1993)
researchProduct

An investigation into the fracture behaviour of honeycombs with density gradients

2020

International audience; In this study we perform an experimental and computational investigation about the fracture behaviour of polymer honeycombs presenting gradients in terms of lattice density. Such lattice relative density variations are introduced with the aim of mimicking the micro-morphology encountered in some natural materials, such as several kinds of woods, which seems related to the ability of the corresponding macro-material to delay the propagation of fracture under certain conditions. Starting from the conclusions of previous computational analyses, we perform a few experimental tensile tests on ABS model honeycombs obtained by additive manufacturing, with the aim of getting…

010302 applied physicsMaterials scienceNatural materials020502 materialsAdditive ManufacturingComputational Mechanics02 engineering and technologyMechanics[PHYS.MECA.MSMECA]Physics [physics]/Mechanics [physics]/Materials and structures in mechanics [physics.class-ph]01 natural sciencesFracture MechanicFinite element method[PHYS.MECA.MEMA]Physics [physics]/Mechanics [physics]/Mechanics of materials [physics.class-ph]Fracture toughnessLattice Material0205 materials engineeringHomogeneousLattice (order)0103 physical sciencesUltimate tensile strength[PHYS.MECA.SOLID]Physics [physics]/Mechanics [physics]/Solid mechanics [physics.class-ph]Fracture (geology)[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Relative densitySettore ING-IND/04 - Costruzioni E Strutture Aerospaziali
researchProduct

Interferences in Locally Resonant Sonic Metamaterials Formed from Helmholtz Resonators

2019

[EN] The emergence of materials artificially designed to control the transmission of waves, generally called metamaterials, has been a hot topic in the field of acoustics for several years. The design of these metamaterials is usually carried out by overlapping different wave control mechanisms. An example of this trend is the so-called Locally Resonant Sonic Materials, being one of them the Phononic Crystals with a local resonant structure. These metamaterials are formed by sets of isolated resonators in such a way that the control of the waves is carried out by resonances and by the existence of Bragg bandgaps, which appear due to the ordered distribution of the resonators. Their use is b…

010302 applied physicsPhysicsPhysics and Astronomy (miscellaneous)Field (physics)AcousticsMetamaterialResonancePhysics::Optics02 engineering and technologyLow frequency021001 nanoscience & nanotechnology01 natural sciencesFinite element methodResonatorCoupling (physics)symbols.namesakeHelmhotz resonatorsHelmholtz free energyMetamaterialsFISICA APLICADA0103 physical sciencessymbols0210 nano-technology
researchProduct

Determination of elastoplastic properties of TiO2 thin films deposited on dual phase stainless steel using nanoindentation tests

2010

International audience; In recent years, the extraction of mechanical behaviour of thin films by nanoindentation using sharp indenter geometry has been extensively studied. This work investigates the mechanical properties of TiO2 thin film (1 µm thickness) deposited by spin coating on dual phase Duplex stainless steel and glass substrates. Experiments are carried out with different sharp triangular pyramids (a Cube corner and a Berkovich indenter) using a commercial Nano Indenter® XP apparatus. The substrate effect has been counteracted and an inverse method proposed in literature for bulk material has been adapted to assess the elastoplastic parameters of the tested thin film directly from…

010302 applied physicsSpin coatingMaterials scienceThin filmsMetallurgy02 engineering and technologySurfaces and InterfacesGeneral ChemistrySubstrate (electronics)Inverse methodNanoindentation021001 nanoscience & nanotechnologyCondensed Matter Physics01 natural sciencesFinite element methodNanoindentationSurfaces Coatings and FilmsPhase (matter)0103 physical sciencesNano-Materials ChemistryThin film0210 nano-technologyFinite element modelingElastic modulus
researchProduct

Finite element analysis of stress concentration between surface coated implants and non surface coated implants - An in vitro study.

2019

Background To determine qualitative comparison in stress distribution between surface coated implants and non surface coated implants using 2 different lengths and vertical, oblique, and lateral forces. Material and Methods 3 dimensional finite element study was carried out at first molar site with 4 surface coated and 4 non surface coated implants using mimic 8.11, solid edge 2004, hypermesh 9.0, and ansys12.1 software. Results The pattern of stress distribution was almost similar between vertical and oblique loading but varied with lateral loads between surface coated and non surface coated implants. As the length of the implants increased stress concentration had no significant variation…

010302 applied physicsSurface (mathematics)Prosthetic DentistryMaterials scienceResearch02 engineering and technologyEdge (geometry)021001 nanoscience & nanotechnology01 natural sciencesFinite element methodStress (mechanics)Surface coatingUNESCO::CIENCIAS MÉDICAS0103 physical sciencesComposite material0210 nano-technologyGeneral DentistryAbutment (dentistry)Stress concentrationAbutment ScrewJournal of clinical and experimental dentistry
researchProduct

Computer-aided analysis and design procedure for rotating induction machine magnetic circuits and windings

2018

The aim of this study is to present a new, accurate, and user-friendly software procedure for the analysis and rapid design of rotating induction machine windings, considering both the electric and the magnetic specifications of the machine itself. This procedure is a valid aid for quick first stage design without the necessity of using finite element method (FEM)-based design procedures. FEM can be used in a second design phase in order to refine the first stage results. The design procedure is hereafter outlined and some examples show its capability.

010302 applied physicsbusiness.industryComputer science020208 electrical & electronic engineeringAsynchronous machinesControl engineering02 engineering and technologySettore ING-IND/32 - Convertitori Macchine E Azionamenti Elettrici01 natural sciencesFinite element methodMagnetic circuitDesign phaseInduction machineSoftwareElectromagnetic coil0103 physical sciences0202 electrical engineering electronic engineering information engineeringMachine windingMagnetic circuitsElectrical and Electronic EngineeringbusinessComputer aided analysis and designAsynchronous machineryComputer aided analysi
researchProduct

Vibration Tests and Structural Identification of the Bell Tower of Palermo Cathedral

2019

Background: The recent seismic events in Italy have underlined once more the need for seismic prevention for historic constructions of architectural interest and in general, the building heritage. During the above-mentioned earthquakes, different masonry monumental buildings have been lost due to the intrinsic vulnerability and ageing that reduced the structural member strength. This has made the community understand more that prevention is a necessary choice for the protection of monuments. Objective: The paper aims at demonstrating a strategy of investigation providing the possibility of health judgment, identifying a computational model for the assessment of structural capacity under se…

010504 meteorology & atmospheric sciencesComputer science020101 civil engineeringCompatibility with service loads02 engineering and technology01 natural sciencesBell towerSeismic vulnerabilitylcsh:TH1-97450201 civil engineeringHistorical-monumental buildings0105 earth and related environmental sciencesStructural health monitoringbusiness.industryFinite Element (FE) modelBuilding and ConstructionStructural engineeringSeismometersVibrationIdentification (information)Settore ICAR/09 - Tecnica Delle CostruzioniStructural health monitoring Historical-monumental buildings Seismic vulnerability Compatibility with service loads Seismometers Finite Element (FE) model.Compatibility with service loads; Finite Element (FE) model; Historical-monumental buildings; Seismic vulnerability; Seismometers; Structural health monitoringStructural health monitoringbusinesslcsh:Building construction
researchProduct

Biomechanical insights into the dentition of megatooth sharks (Lamniformes: Otodontidae)

2021

AbstractThe evolution of gigantism in extinct otodontid sharks was paralleled by a series of drastic modifications in their dentition including widening of the crowns, loss of lateral cusplets, and acquisition of serrated cutting edges. These traits have generally been interpreted as key functional features that enabled the transition from piscivory to more energetic diets based on marine mammals, ultimately leading to the evolution of titanic body sizes in the most recent forms (including the emblematic Otodus megalodon). To investigate this hypothesis, we evaluate the biomechanics of the anterior, lateral, and posterior teeth of five otodontid species under different loading conditions by…

0106 biological sciences010506 paleontologyEvolutionFunctional featuresScienceFinite Element AnalysisPaleontologiaBiology010603 evolutionary biology01 natural sciencesArticleOtodontidaeAnimalsBody SizeDentition14. Life underwater0105 earth and related environmental sciencesMultidisciplinaryDentitionMegalodonFossilsPalaeontologyQROtodusbiology.organism_classificationBiological EvolutionBiomechanical PhenomenaEvolutionary biologyPosterior teethSharksLamniformesMedicineHeterochronyTooth
researchProduct

Feeding biomechanics of Late Triassic metoposaurids (Amphibia: Temnospondyli): a 3D finite element analysis approach

2017

The Late Triassic freshwater ecosystems were occupied by different tetrapod groups including large-sized anamniotes, such as metoposaurids. Most members of this group of temnospondyls acquired gigantic sizes (up to 5 m long) with a nearly worldwide distribution. The paleoecology of metoposaurids is controversial; they have been historically considered passive, bottom-dwelling animals, waiting for prey on the bottom of rivers and lakes, or they have been suggested to be active mid-water feeders. The present study aims to expand upon the paleoecological interpretations of these animals using 3D finite element analyses (FEA). Skulls from two taxa, Metoposaurus krasiejowensis, a gigantic taxon …

0106 biological sciences010506 paleontologyHistologyFinite Element AnalysisMetoposaurus010603 evolutionary biology01 natural sciencesFreshwater ecosystemBite ForcePredationAmphibiansTetrapod (structure)AnimalsMolecular BiologyEcology Evolution Behavior and Systematics0105 earth and related environmental sciencesApex predatorbiologyFossilsEcologySkullTemnospondyliOriginal ArticlesFeeding BehaviorCell Biologybiology.organism_classificationBiological EvolutionBiomechanical PhenomenaTaxonApachesaurus; ecomorphology; Late Triassic; Metoposaurus; paleoecologyPaleoecologyAnatomyDevelopmental BiologyJournal of Anatomy
researchProduct

Cranial suture biomechanics inMetoposaurus krasiejowensis(Temnospondyli, Stereospondyli) from the upper Triassic of Poland

2019

Cranial sutures connect adjacent bones of the skull and play an important role in the absorption of stresses that may occur during different activities. The Late Triassic temnospondyl amphibian Metoposaurus krasiejowensis has been extensively studied over the years in terms of skull biomechanics, but without a detailed description of the function of cranial sutures. In the present study, 34 thin sections of cranial sutures were examined in order to determine their histovariability and interpret their biomechanical role in the skull. The histological model was compared with three-dimensional-finite element analysis (FEA) simulations of the skull under bilateral and lateral biting as well as …

0106 biological sciences0301 basic medicineStereospondylifinite element analysisBiologyMetoposaurus010603 evolutionary biology01 natural sciencesdermal bonesAmphibianshistology03 medical and health sciencesmedicineAnimalsCompression (geology)Fibrous jointSkull roofFossilsSkullTemnospondyliCranial SuturesAnatomypalaeoecologybiology.organism_classificationBiomechanical PhenomenaSkull030104 developmental biologymedicine.anatomical_structureBitingAnimal Science and ZoologyPolandDevelopmental BiologyJournal of Morphology
researchProduct