Search results for "Finite element"
showing 10 items of 892 documents
Evaluation of infilled frames: an updated in-plane-stiffness macro-model considering the effects of vertical loads
2015
The influence of masonry infills on the in-plane behaviour of RC framed structures is a central topic in the seismic evaluation and retrofitting of existing buildings. Many models in the literature use an equivalent strut member in order to represent the infill but, among the parameters influencing the equivalent strut behaviour, the effect of vertical loads acting on the frames is recognized but not quantified. Nevertheless a vertical load causes a non-negligible variation in the in-plane behaviour of infilled frames by influencing the effective volume of the infill. This results in a change in the stiffness and strength of the system. This paper presents an equivalent diagonal pin-jointed…
FE Calculation Methodology for the Thermodynamic Fatigue Analysis of an Engine Component
2006
Thermo mechanical fatigue problem is treated to define an analysis methodology permitting the strength evaluation by reliability viewpoint. The main difficulty is the lack of both theoretical and experimental information; consequently the problem is treated verifying continually the validity and the limits of the developing solution method. The main task of the activity described in this paper was the development of a numerical methodology, based on FE analyses, for the evaluation of the structural behavior of engine components subjected to thermo mechanical fatigue phenomena. The chosen application was the exhaust manifold of an IC engine; FE analyses were executed following the standard m…
Use of finite element models for estimating thermal performance of façade-integrated solar thermal collectors
2016
Abstract Research on building-integrated solar thermal collectors is attracting increasingly more interest. Many efforts have been focused at the design level for obtaining specific building-orientated products, but there is a significant lack of standardised methods for evaluating how the efficiency of solar collectors changes when a wall is an integral part of the solar component itself. Generally speaking, experimental tests on integrated components are not easy to realise and are, in any case, expensive in terms of time and money. Physical and numerical methods can be utilised, but at the moment, there is no common approach. The present work addresses a method for the calculation of a b…
Using FEM simulation to predict structural performances of a sailing dinghy
2017
The use of finite element method (FEM) tools is proposed to investigate the structural response of an eco-sustainable sailing yacht to different loading conditions, typical of those acting during regattas. The boat is, in particular, a 4.60 m dinghy with the hull and the deck made of an hybrid flaxâcork sandwich and internal reinforcements made of marine plywood. A preliminary activity has consisted in the refitting of an existing model in order to reduce the hull weight and to improve performances during manoeuvrings. These tasks have been interactively simulated in the virtual environment of the boat CAD model, where longitudinal and transversal reinforcements were enlightened and the m…
Thermal stress analysis of different full and ventilated disc brakes
2015
During the braking phase, the heat produced by friction between pads and disc cannot be entirely dissipated. Consequently, the brake disc, especially if very hard braking occur, can accumulate large amounts of heat in a short time so producing high gradients of temperature on it. Under these conditions, functionality and safety of the brake system can be compromised. The object of this study is to investigate, under extreme working conditions, the thermomechanical behaviour of different brake rotors in order to evaluate their efficiency and stability and to identify any compromising weakness on them. In particular, by means of FEM thermo-mechanical coupled analyses, one full disc and three …
The effect of manufacturing tolerances on a tubular linear ferrite motor
2015
This study presents a numerical and experimental study on the effect of permanent magnet tolerances on the performances of a Tubular Linear Ferrite Motor. The statistical distribution of the magnetic characteristic of a set of commercial magnets is obtained experimentally while the performances of a the tubular motor are numerically evaluated. The performances that have been considered are: cogging force, end effect force and generated thrust. It has been shown that: 1)the statistical variability of the magnets modifies the time behavior of the cogging force; 2)the value of both the end effect cogging force and the generated thrust are directly linked to the values of then remanence field o…
Piezoelectric energy harvesting from raised crosswalk devices
2015
This paper presents the main characteristics of an experimental energy harvesting device that can be used to recover energy from the vehicular and pedestrian traffic. The use of a piezoelectric bender devices leads to a innovative approach to Henergy Harvesting. The study focuses on the definition and specification of a mechanical configuration able to transfer the vibration from the main box to the piezoelectric transducer. The piezoelectric devices tested is the commonly used monolithic piezoceramic material lead-zirconate-titanate (PZT). The experimental results estimate the efficiency of this device tested and identify the feasibility of their use in real world applications. The results…
Unified formulation for a family of advanced finite elements for smart multilayered plates
2016
AbstractFamilies of layer-wise and equivalent single-layer advanced finite elements for the analysis of smart multilayered plates are formulated in a unified framework. The proposed modeling strategy reduces the multifield problem to an effective mechanical plate by the condensation of the electromechanical state into the plate kinematics, which is assumed as a variable order expansion along the plate thickness. Carrera Unified Formulation is invoked to derive the elemental stiffness and mass matrices and the mechanical and magneto-electric equivalent forces. The obtained smart plate finite element equations involves kinematical variables only and this extends the tools developed for multil…
3D simulations and experiments of guided wave propagation in adhesively bonded multi-layered structures
2010
Understanding guided wave propagation in multi-layered plates and interaction with discontinuities can be difficult, as well as the interpretation of the ultrasonic signals. Propagation of guided waves can be studied analytically solving the equations of motion with the proper boundary conditions; nevertheless analytical models can be difficult to solve for complex multi-layered structures or having inner discontinuities. The problem can be efficiently studied using numerical techniques. Simulation of guided wave propagation in multi-layered structures, for ultrasonic waves in the MHz range, is solved here with the finite element analysis based on an explicit integration rule to solve the e…
Guided Wave Propagation in a Plate Edge and Application to NDI of Rail Base
2012
The analysis of guided wave propagation in a plate edge can be useful for some applications, such as for the inspection of the rail base. Here guided waves generated by a laser beam hitting, on the inclined surface, a solid media with trapezoidal cross-section have been studied. We have found that, for the geometry investigated, two guided waves propagate along both free surfaces of the plate, with same velocity and frequency. The analysis of the trajectories of the two material points, due to waves propagation, shows that the wave packets can be identified as Rayleigh waves. The presence of S0 Lamb mode, with low frequency and low amplitude, has been revealed too. As an example of a possib…