Search results for "Finite element"
showing 10 items of 892 documents
Nanomechanics of individual aerographite tetrapods
2017
Carbon-based three-dimensional aerographite networks, built from interconnected hollow tubular tetrapods of multilayer graphene, are ultra-lightweight materials recently discovered and ideal for advanced multifunctional applications. In order to predict the bulk mechanical behaviour of networks it is very important to understand the mechanics of their individual building blocks. Here we characterize the mechanical response of single aerographite tetrapods via in situ scanning electron and atomic force microscopy measurements. To understand the acquired results, which show that the overall behaviour of the tetrapod is governed by the buckling of the central joint, a mechanical nonlinear mode…
Real-time simulation of tissue deformation for the nasal endoscopy simulator (NES).
1999
Endonasal sinus surgery requires a great amount of training before it can be adequately performed. The complicated anatomy involved, the proximity of relevant structures, and the variability of the anatomy due to inborn or iatrogenic variations make several complications possible. Today, cadaver dissections are the "gold standard" for surgical training. To overcome the drawbacks of traditional training methods, the Fraunhofer Institute for Computer Graphics is currently developing a highly interactive medical simulation system for nasal endoscopy and endonasal sinus surgery, in cooperation with the Mainz University Hospital. For the simulation of a rhinoscopic procedure, not only are the re…
Sheet Bending Modelling for AA 5083 Aluminium Alloy
1995
An extensive investigation of the V- and U-die bending processes of AA 5083 aluminium alloy has been performed by means of the finite element method and the experimental tests. The predicted results, in terms of elastic springback and loads, were compared with the experimental ones in similar conditions. At a given punch stroke, the springback ratio K increases with the sheet thickness, and, at a constant sheet thickness, K increases with the punch stroke. The comparison between predicted and experimental K values shows an excellent agreement in all the ranges of punch stroke and sheet thickness investigated. A very good agreement between the predicted bending forces and the experimental on…
Stress-strain analysis of specimens subjected to tensile loading during moisture uptake
2015
Abstract: A robust and efficient numerical method for the calculation of the internal stress state that develops within structures subjected to mechanical and steady state or transient hygroscopic loading conditions, has been developed. The method encompasses a layer by layer approach whereby the structure is discretised into plies with different material properties corresponding to the different ply moisture content. The proposed method has been validated against finite element solutions, and results from its application on a fully characterised EDT (technical name) polymer binder are presented. The impact of the moisture induced viscoelastic behaviour on the structural response of the cas…
Firefly Algorithm for Structural Optimization Using ANSYS
2021
In the mid-1980s, several metaheuristic methods began to be developed for solving a very large class of computational problems with the aim of obtaining more robust and efficient procedures. Among them, many metaheuristic methods use bio-inspired intelligent algorithms. In recent years, these methods are becoming increasingly important and they can be used in various subject areas for solving complex problems. Firefly Algorithm is a nature-inspired optimization algorithm proposed by Yang to solve multimodal optimization problems. In particular, the method is inspired by the nature of fireflies to emit a light signal to attract other individuals of this species. In this work, a numerical stu…
Energy analysis of a non-linear dynamic impact using FEM
2014
In the car industry, the Finite Element Method (FEM) is being more and more used to analyze the crashworthiness performance of vehicles. In order to validate the results, these impact simulations are normally compared with real crash footage and acceleration data. This paper studies the deformation- and energy output of a simple dummy model during a non-linear dynamic impact. The dummy model is crashed into an obstacle at three different velocities to observe the energy dissipated through different damping mechanisms. Furthermore, in impact simulations, material damping plays an important role in energy dissipation. However, it can be difficult to determine realistic damping parameter value…
Modelling Aspects in Accumulative Roll Bonding process by Explicit Finite Element Analysis
2013
Accumulative Roll-Bonding (ARB) process is a severe plastic deformation (SPD) process, capable of developing grains below 1 μm in diameter and improving mechanical properties of the material. In this study, the authors compared two different FE-codes with respect of its applicability for numerical analysis of the ARB process. Modelling this process was achieved using the explicit code for Abaqus/CAE both in 2D and 3D. The proposed model was used to assess the impact of ARB cycles on the final material properties. The numerical results in 2D and 3D were compared and contrasted. The research work presented in this paper is focused on the simulation optimization based on CPU time minimization.…
Technical Note: Prediction Models of Airborne Sound Insulation of Multilayer Materials with Viscoelastic Thin Sheets
2008
The growing introduction of new insulation materials in building acoustics has caused an increase of the importance of the prediction tools. Appropriate simulations allow strictly necessary laboratory measurements to be identified. In this way, costs are reduced. The demands of new legislation has resulted in the appearance of various software designed to facilitate prediction. The prediction models are based on different hypotheses: adaptation of impedances, spatial behaviour of spectral components, statistical energy distribution, the Finite Element Method (FEM), etc. Each of these models and methods offer advantages and contain limitations. In this paper, different models for prediction…
Complex power distribution analysis in plates covered with passive constrained layer damping patches
2012
International audience; The vibration of a plate partially covered with a passive constrained layer damping (PCLD) patch is studied from an energetic point of view. The damped plate is excited by an acoustic plane wave. The study is done with a numerical two-dimensional multilayer plate model. Results of the present model are compared to those obtained with three-dimensional finite element models. It is shown that the present model gives accurate results, even for the layer's inner behavior. It is less expansive in terms of computational cost; hence, it can simulate efficiently the structure for higher frequencies. Mathematical formulas for complex mechanical power are presented, and the li…
Global-Local model for guided wave scattering problems with application to defect characterization in built-up composite structures
2020
Abstract Predicting scattering of elastic guided waves in multi-layered solid plates with geometrical and/or material discontinuities is of great interest to many fields, including ultrasonic-based Non-Destructive Testing (NDT) and health monitoring of critical structural components (SHM). The problem is complicated by the multimode and dispersive behaviour of the guided waves. This paper describes a unified Global-Local (GL) approach that is computationally efficient in cases that can be very complex in terms of geometry and/or material properties. One example of this is a composite built-up structure. The proposed GL procedure discretizes the “local” region with the scattering discontinui…