Search results for "Fixed Point"
showing 7 items of 347 documents
The MLE of the mean of the exponential distribution based on grouped data is stochastically increasing
2016
This paper refers to the problem stated by Balakrishnan et al. (2002). They proved that maximum likelihood estimator (MLE) of the exponential mean obtained from grouped samples is stochastically ordered provided that the sequence of the successive distances between inspection times is decreasing. In this paper we show that the assumption of monotonicity of the sequence of distances can be dropped.
Coincidence and common fixed points of weakly reciprocally continuous and compatible hybrid mappings via an implicit relation and an application
2015
Using the hybrid version of the notion of weakly reciprocal continuous mappings due to Gairola et al. [Coincidence and fixed point for weakly reciprocally continuous single-valued and multi-valued maps, Demonstratio Math. (2013/2014), accepted], we prove a coincidence and common fixed point theorem for a hybrid pair of compatible mappings via an implicit relation. Our main result improves and generalizes a host of previously known theorems. As an application, we give a homotopy theorem which supports our main result.
On modified α-ϕ-fuzzy contractive mappings and an application to integral equations
2016
Abstract We introduce the notion of a modified α-ϕ-fuzzy contractive mapping and prove some results in fuzzy metric spaces for such kind of mappings. The theorems presented provide a generalization of some interesting results in the literature. Two examples and an application to integral equations are given to illustrate the usability of our theory.
Aspects regarding the existence of fixed points of the iterates of Stancu operators
2019
In the papers Iterates of Stancu Operators, via Contraction Principle (2002), respectively Iterates of Bernstein Operators, via Contraction Principle (2004), author I. A. Rus studied the existence of fixed points for Stancu operators Pn,α,β and Bernstein operators Bn. The aim of this paper is to find conditions for which the Stancu operators Pn,α,β are contractions on the graph, in order to demonstrate that the contraction principle can be applied for the study of the existence of fixed points for iterates of Stancu operators. The method used for this paper is the spectral method, which was also used in the paper Over-iterates of Bernstein-Stancu operators (2007), authors Gonska, Piţul and …
On multivalued weakly Picard operators in partial Hausdorff metric spaces
2015
We discuss multivalued weakly Picard operators on partial Hausdorff metric spaces. First, we obtain Kikkawa-Suzuki type fixed point theorems for a new type of generalized contractive conditions. Then, we prove data dependence of a fixed points set theorem. Finally, we present sufficient conditions for well-posedness of a fixed point problem. Our results generalize, complement and extend classical theorems in metric and partial metric spaces.
Monotone generalized nonlinear contractions and fixed point theorems in ordered metric spaces
2011
The purpose of this paper is to present some fixed point theorems for T -weakly isotone increasing mappings which satisfy a generalized nonlinear contractive condition in complete ordered metric spaces. As application, we establish an existence theorem for a solution of some integral equations.
The existence of solutions for the modified (p(x), q(x))-Kirchhoff equation
2022
We consider the Dirichlet problem-Delta(Kp)(p(x))u(x) - Delta(Kq)(q(x))u(x) = f(x, u(x), del u(x)) in Omega, u vertical bar(partial derivative Omega) = 0,driven by the sum of a p(x)-Laplacian operator and of a q(x)-Laplacian operator, both of them weighted by indefinite (sign-changing) Kirchhoff type terms. We establish the existence of weak solution and strong generalized solution, using topological tools (properties of Galerkin basis and of Nemitsky map). In the particular case of a positive Kirchhoff term, we obtain the existence of weak solution (= strong generalized solution), using the properties of pseudomonotone operators.